Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T02:11:55.817Z Has data issue: false hasContentIssue false

Design of High-Energetic Materials at the Nanoscale

Published online by Cambridge University Press:  01 February 2011

Bijan K. Rao
Affiliation:
Physics Department, Virginia Commonwealth University, Richmond, VA 23284–2000, U.S.A.
Purusottam Jena
Affiliation:
Physics Department, Virginia Commonwealth University, Richmond, VA 23284–2000, U.S.A.
Get access

Abstract

The amount of energy storage and its release in controllable pathways are two of the fundamental requirements of a high-energy material. The novel chemistry brought about by large surface-to-volume ratio of nanomaterials provides an attractive way to design and synthesize materials that optimize these two requirements. First principles calculations based on density functional theory and generalized gradient approximation have been used to study the potential of AlxLiyOz and Al(MnO4)x clusters as candidates for high-energetic materials. The equilibrium geometries and total energies of these clusters and their fragments are obtained to study the energy stored in these clusters and its release along various pathways. Interesting results include the substantial increase in binding energy by either adding an Al to MnO4 or adding a MnO4 to Al(MnO4)x unit indicating that Al(MnO4)3 may be a potential candidate for energetic materials as well as super-oxidizers. Similar calculations also show that during the combustion of Al addition of small amounts of Li to Al nano-powder helps to reduce the amount of non-combustible Al.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Encyclopedia of Explosives and Related Items”, Ed. Federoff, Basil T. (Dover, NJ, 1960).Google Scholar
2. Pai-Verneker, V. R., Deevi, S. and Deevi, S., Combustion and Flame 67, 163 (1987).Google Scholar
3. Deevi, S., Kishore, K., and Pai-Verneker, V. R., Propulsion and Power 5, 411 (1989).Google Scholar
4. Ziemann, P. J. and Castleman, A. W., Jr., Phys. Rev. B 46, 13480 (1992).Google Scholar
5. Gutsev, G. L., Rao, B. K., Jena, P., Wang, X. B., and Wang, L. S., Chem. Phys. Lett. 312, 598 (1999).Google Scholar
6. Gutsev, G. L. and Boldyrev, A. I., Adv. Chem. Phys. 61, 169 (1985).Google Scholar
7. Li, X., Wu, H., Wang, X. B., and Wang, L. S., Phys. Rev. Lett. 81, 1090 (1998).Google Scholar
8. Rao, B. K. and Jena, P., J. Chem. Phys. 111, 1890 (1999).Google Scholar
9.Physics and Chemistry of Small Clusters”, Eds. Jena, P., Rao, B. K., and Khanna, S. N. (Plenum, New York, 1987).Google Scholar
10. Becke, A. D., Phys. Rev. A 38, 3098 (1988).Google Scholar
11. Perdew, J. P., Burke, K., and Wang, Y., Phys. Rev. B 54, 16533 (1996).Google Scholar
12. Burke, K., Perdew, J. P., and Wang, Y. in Electronic Density Functional Theory: Recent Progress and New Directions, Ed. Dobson, J. F., Vignale, G., and Das, M. P. (Plenum, 1998).Google Scholar
13. DMOL code, Biosym Technologies, Inc., San Diego.Google Scholar
14. Gaussian 98, Revision A.7, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A. Jr, Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S., and Pople, J. A., (Gaussian, Inc., Pittsburgh PA, 1998).Google Scholar
15. Gutsev, G. L., Rao, B. K., and Jena, P., J. Phys. Chem. A 104, 5374 (2000).Google Scholar
16. Bauschlicher, C. W. Jr and Maitre, P., Theo. Chim. Acta 90, 189 (1995).Google Scholar
17. Gutsev, G. L., Rao, B. K., and Jena, P., J. Phys. Chem. A 104, 11961 (2000).Google Scholar
18. Nayak, S. K. and Jena, P., Chem. Phys. Lett. 289, 473 (1998).Google Scholar
19. Rao, B. K. and Jena, P., Phys. Rev. B 32, 2058 (1985).Google Scholar
20. Rao, B. K. and Jena, P., J. Chem. Phys. 111, 1890 (1999).Google Scholar
21. Knight, W. D., Clemenger, K., deHeer, W. A., Saunders, W. A., Chou, M. Y., and Cohen, M. H., Phys. Rev. Lett. 52, 2141 (1984).Google Scholar