No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
Ultrathin (∼10 nm) InN ion sensitive field effect transistors (ISFETs) are functionalized by immobilized label-free oligonucleotide probes with 3-mercaptopropyltrimethoxysilane (MPTMS) through molecular vapor deposition (MVD) technique. This layer on the InN surface serves the function of selectively detecting the hybridization of complementary deoxyribonucleic acid (DNA). Using MVD technique to perform the gas-phase silanization of MPTMS provided a time-saving and simple method to reach 68° water contact angle after 1.5 h treatment. High resolution X-ray photoelectron spectroscopy (HRXPS) was employed to analyze the surface characteristics after functionalization. Modified probes DNA were covalently bonded to MPTMS-covered gate surface of InN ISFETs. And further hybridized with complementary DNA For a 12-mer oligonucleotide probe, a significant drain-source current decrease (∼ 6 μA) was observed for the hybridization with complementary DNA solution of 100 nM. In contrast, the noncomplementary DNA with single-base mismatch did not show obvious current changes. Functionalized ultrathin InN ISFETs for DNA sequence detection demonstrate the promise of biological sensing and genetic diagnosis applications.