Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T21:28:12.905Z Has data issue: false hasContentIssue false

Detection of Lectins using Glyco-Functionalized Nanosensors

Published online by Cambridge University Press:  12 July 2012

Yanan Chen
Affiliation:
Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
Harindra Vedala
Affiliation:
Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
Gregg P. Kotchey
Affiliation:
Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
Aymeric Audfray
Affiliation:
CERMAV - CNRS, affiliated with Université Joseph Fourier and ICMG, BP 53, 38041, Grenoble, France
Samy Cecioni
Affiliation:
CERMAV - CNRS, affiliated with Université Joseph Fourier and ICMG, BP 53, 38041, Grenoble, France Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 – Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
Anne Imberty
Affiliation:
CERMAV - CNRS, affiliated with Université Joseph Fourier and ICMG, BP 53, 38041, Grenoble, France
Sébastien Vidal
Affiliation:
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 – Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
Alexander Star
Affiliation:
Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
Get access

Abstract

We have used single-walled carbon nanotube field-effect transistor (SWNT-FET) and chemically converted graphene field-effect transistor (CCG-FET) devices to probe the interactions between carbohydrates and their recognition lectins. Porphyrin- and pyrene-based glycoconjugates were used as receptor molecules and the target lectins were two bacterial lectins that present different carbohydrate preference, namely PA-IL, PA-IIL from Pseudomonas aeruginosa and a plant lectin Concanavalin A. The specific binding between lectin and carbohydrate can be transduced to the change in FET device conductance. An initial study with SWNT-FET noncovalently functionalized with porphyrin-based glycoconjugates showed both good selectivity and sensitivity. To compare SWNT and CCG performance, pyrene- and porphyrin-based glycoconjugates were functionalized noncovalently on the surface of CCG-FET and SWNT-FET devices, which were then treated with non-specific and specific lectins. The responses were compared and rationalized using computer-aided models of carbon nanostructure/glycoconjugate interactions. Fluorescence microscopy, atomic force microscopy, UV-vis-NIR spectroscopy and Isothermal titration microcalorimetry (ITC) measurements were used to confirm the electrical results.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lis, H. and Sharon, N., Chem. Rev. 98, 637 (1998).CrossRefGoogle Scholar
Imberty, A. and Varrot, A., Curr. Opin. Struct. Biol. 18, 567 (2008).CrossRefGoogle Scholar
Gustavo, A., Jordi, R., Ali, D. and Rius, F., Angew. Chem. Int. Ed. 48, 73347337 (2009).Google Scholar
Star, A., Gabriel, J.-C. P., Bradley, K. and Grüner, G., Nano Lett. 3, 459463 (2003).CrossRefGoogle Scholar
Mao, S., Lu, G., Yu, K., Bo, Z. and Chen, J., Adv. Mater. 22, 35213526 (2010).CrossRefGoogle Scholar
Hasegawa, T., Fujisawa, T., Numata, M., Umeda, M., Matsumoto, T., Kimura, T., Okumura, S., Sakurai, K. and Shinkai, S., Chem. Commun. 21502151 (2004).CrossRefGoogle Scholar
Sudibya, H. G., Ma, J., Dong, X., Ng, S., Li, L., Liu, X. and Chen, P., Angew. Chem. Int. Ed. 48, 27232726 (2009).CrossRefGoogle Scholar
Vedala, H., Chen, Y., Cecioni, S., Imberty, A., Vidal, S., Star, A., Nano Lett. 11, 170175 (2011).CrossRefGoogle Scholar
Chen, Y., Vedala, H., Kotchey, G. P., Audfray, A., Cecioni, S., Imberty, A., Vidal, S., and Star, A., ACS Nano 6, 760770 (2012).CrossRefGoogle Scholar
Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol. 3, 101105 (2008).CrossRefGoogle Scholar
Kotchey, G. P., Allen, B. L., Vedala, H., Yanamala, N., Kapralov, A. A., Tyurina, Y. Y., Klein-Seetharaman, J., Kagan, V. E., Star, A., ACS Nano, 5, 20982108 (2011).CrossRefGoogle Scholar
Blanchard, B., Nurisso, A., Hollville, E., Tétaud, C., Wiels, J., Pokorna, M., Wimmerova, M., Varrot, A., Imberty, A., J. Mol. Biol. 383, 837853 (2008).CrossRefGoogle Scholar
Mitchell, E.P., Sabin, C., Snajdrova, L., Budova, M., Perret, S., Gautier, C., Hofr, C., Gilboa-Garber, N., Koča, J., Wimmerová, M., et al. . Proteins, 58, 735748 (2005).CrossRefGoogle Scholar
Hecht, D.S., Ramirez, R. J., Briman, M. J., Artukovic, E., Chichak, K. S., Stoddart, J. S. and Grüner, G., Nano lett. 6, 2031 (2006).CrossRefGoogle Scholar
Wanekaya, A., Chen, W., Myung, N. and Mulchandani, A., Electroanalysis, 18, 533550 (2006).CrossRefGoogle Scholar