Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T01:10:33.844Z Has data issue: false hasContentIssue false

Determination of The Diffusion Mechanism by A Method with New Possibilities: Nuclear Scattering of Synchrotron Radiation

Published online by Cambridge University Press:  10 February 2011

B. Sepiol*
Affiliation:
Institut für Materialphysik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
Get access

Abstract

The elementary diffusion jump in crystalline solids can be determined by methods derived from nuclear physics. With these methods not only diffusion rate(s) but also diffusion vector(s), i.e. the complete diffusion mechanism can be deduced. We report on a new method for probing the elementary diffusion jumps in crystalline lattices on an atomistic scale and demonstrate its potential by a study of 57Fe diffusion in different intermetallic alloys. Compared to the results of conventional tracer (macroscopic) technique, the new method provides clear and doubtless statements concerning the direction and distance of elementary jumps. One can also determine (though less precisely than with tracer diffusion), iron diffusion coefficients.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Singwi, K. S. and Sjolander, A., Phys. Rev. 119 863 (1960); 120 1093 (1960).Google Scholar
2. Philibert, J., Diffusion and Mass Transport in Solids, (Les Editions de Physique, 1991) p. 51.Google Scholar
3.The name intermediate “derives originally from QNS where the measured scattering function S(Q,ω) is calculated from the space-time correlation function Gs(r,t) by performing first a Fourier transform from space into momentum (leading to the intermediate scattering function) and then a Fourier transformation from time into energy, leading to S(Q,ω).Google Scholar
4. Chudley, C. T. and Elliott, R. J., Proc. Phys. Soc. London 77 353 (1961).Google Scholar
5. Hempelmann, R., in Proc. Second Summer School on Neutron Scattering, edited by Furrer, A. (World Scientific 1994) pp. 201224.Google Scholar
6. Sepiol, B., Defect and Diffus. Forum 125–126 1 (1995); G. Vogl, Physica B 226 135 (1996).Google Scholar
7.The increasing effective thickness of the sample caused by the increase in the Lamb-Mossbauer factor through reducing temperature, will also result in faster decay of intensity (dynamical beats). The exact time dependence of intensity is, however, different than in case of diffuisional acceleration and specially for thick samples both factors can be deconvoluted.Google Scholar
8. Gerdau, E. and Burck, U. van, in Resonant Anomalous X-Ray Scattering, Theory and Applications, edited by Materlik, G., Sparks, C. J., and Fischer, K., (North-Holland, Amsterdam 1994), p. 589.Google Scholar
9. Smirnov, G. V., Hyperfine Interact. 97/98, 551 (1996); in X-ray and Inner-Shell Processes, editrd by R. L. Johnson, H. Schmidt-Bocking, and B. F. Sonntag, AIP Conf. Proc. No. 389 (AIP, New York 1997), p. 323.Google Scholar
10. Ruby, S. L., J. Phys. 35, C6209 (1974).Google Scholar
11. Gerdau, E., Riffer, R., Winkler, H., Tolksdorf, W., Klages, C.P., and Hannon, J. P., Phys. Rev. Lett. 54 835 (1985).Google Scholar
12. Hastings, J. B., Siddons, D. P., Burck, U. van, Holland, R., and Bergmann, U., Phys. Rev. Lett. 66 770 (1992).Google Scholar
13. Smirnov, G. V. and Kohn, V. G., Phys. Rev. B 52 3356 (1995); V.G. Kohn and G. V. Smirnov, ibid., 57 5788 (1998).Google Scholar
14. Ruffer, R. and Chumakov, A. I., Hyperfine Interact. 97–98 509 (1996).Google Scholar
15. Baron, A. Q. R., Nucl. Instrum. Methods Phys. Res. A 352 665 (1995).Google Scholar
16. Meyer, A., Sepiol, B., Vogl, G., Franz, H., and Rüffer, R., to be published.Google Scholar
17. Vogl, G. and Sepiol, B., Acta Metall. Mater. 42 3175 (1994).Google Scholar
18. Vogl, G., Sepiol, B., Czihak, C., Rüffer, R., Weinkamer, R., Fratzl, P., Fähnle, M, and Meyer, B in Diffusion Mechanism in Crystalline Materials, edited by Catlow, C.R.A., Cowern, N., Farkas, D., Mishin, Y., and Vogl, G. (Mater. Res. Soc. Proc. Pittsburg, PA, 1998).Google Scholar
19. Sepiol, B., Meyer, A., Vogl, G., Rüffer, R., Chumakov, A. I., and Baron, A. Q. R., Phys. Rev. Lett. 76 3220 (1996).Google Scholar
20. Sepiol, B., Meyer, A., Vogl, G., Franz, H., and Rüffer, R., Phys. Rev. B57(17), (1998) in press.Google Scholar
21. Sepiol, B. and Vogl, G., Phys. Rev. Lett. 71 731 (1993).Google Scholar
22. Randl, O.G., Sepiol, B., Vogl, G., Feldwisch, R., and Schroeder, K., Phys. Rev. B 49 8768 (1994).Google Scholar
23. Baron, A. Q. R., Franz, H., Meyer, A., Rüffer, R., Chumakov, A. I., Bürkel, E. and Petry, W., Phys. Rev. Lett. 79 2823 (1997).Google Scholar