No CrossRef data available.
Published online by Cambridge University Press: 23 February 2015
Determining upconversion parameters is of high interest in laser material development. For many materials these parameters cannot be directly measured by experimental methods. These upconversion coefficients appear as unknown parameters in the laser rate equations, which are a system of coupled nonlinear differential equations that are used to model the dynamics of population densities in different energy levels. In this paper we propose the well-established system theoretic tools pertaining to the system inversion to be applied in this case. The unknown parameters can be considered as the inputs and the fluorescence signals can be considered as the outputs of the dynamical system. Therefore the determination of the unknown upconversion rates in the system equations from the output data is a classical system inversion problem. In this paper we demonstrate how to compute the unknown coefficients in the rate equations from the experimental emission data utilizing this method.