Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T03:34:30.251Z Has data issue: false hasContentIssue false

Development of an Algorithm for Random Packing of Multi-Sized Spherical Particles

Published online by Cambridge University Press:  01 February 2011

H. de la Garza-Gutiérrez
Affiliation:
Instituto Politécnico Nacional. Centro de Investigación e Innovación Tecnológica CIITEC-IPN. Cerrada CECATI S/N. Col. Santa Catarina. Azcapotzalco, C.P.02250, México D.F. Mexico. Instituto Tecnológico de Chih.-II, Av. de las Industrias 11101, Comp. Ind. Chihuahua, Mexico.
G. Plascencia-Barrera
Affiliation:
Instituto Politécnico Nacional. Centro de Investigación e Innovación Tecnológica CIITEC-IPN. Cerrada CECATI S/N. Col. Santa Catarina. Azcapotzalco, C.P.02250, México D.F. Mexico.
S. D. de la Torre
Affiliation:
Instituto Politécnico Nacional. Centro de Investigación e Innovación Tecnológica CIITEC-IPN. Cerrada CECATI S/N. Col. Santa Catarina. Azcapotzalco, C.P.02250, México D.F. Mexico.
Get access

Abstract

A new computational algorithm is introduced for packing simulation of spherical elements/particles into an imaginary container with three main possible geometries, cubic, cylindrical and spherical. The performance of the algorithm depends directly on the strategy or logic considered to solve the problem and the quality of its computational implementation. The combination of these two factors let the packing algorithm here presented and named as Octant Packing Random Algorithm (OPRA) to reduce the computation time between 2 and 127 times, when compared with the simplest or classical Packing Algorithm. OPRA is designed to reduce the number of comparisons needed to accept or reject a new position for an element/particle to be allocated into the virtual container. OPRA considers the container as if it were divided into 8 equal cells or octants limiting the overlap detection for a new position.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Stroeven, P, Stroeven, M., Image Anal Stereol 19: 8590 and 22:1–10 (2003)Google Scholar
[2] Sobolev, K, Amijanov, A., Advanced Powder Tech. 15(3), 365 (2004)Google Scholar
[3] Sobolev, K, Amirjanov, A., Powder Tech. 141, 155 (2004).Google Scholar
[4] Okubo, T, Odagaki, T., J. of Physics: Condensed Matter. 37, 6651 (2004).Google Scholar
[5] Sugihara, K., J. of the Japan Society for Simulation Tech. 24(2),166 (2005).Google Scholar
[6] Nolan, G.T., Kavanagh, P.E., Powder Tech. 72(2), 149 (1992).Google Scholar
[7] Uche, Q.U., Stillinger, F.H., Torquato, S., Physica A: Statical Machanics and its Applications, 342(3–4), 428 (2004).Google Scholar
[8] Cheol, K. J., Martin, M.D, Sung, L.Ch., Powder Tech., 123(3), 211 (2002).Google Scholar
[9] Nolan, G.T., Kavanagh, P.E., Powder Tech., 84(3), 199 (1992).Google Scholar
[10] Vrabecz, A., Tóth, G., Molecular Physics. 104(12), 1843 (2006).Google Scholar
[11] Santiso, E., Muller, E.A., Molecular Physics. 100(15), 2461 (2002).Google Scholar
[12] Abreu, C.R.A, Macias-S., R, Tavares, F.W., Castier, M.Braz. J. Chem. Eng., 16(4), (1999).Google Scholar