Published online by Cambridge University Press: 31 January 2011
A wide variety of nanofillers of varying compositions have been used to create polymer nanocomposites, including tubes, wires, fibers, sheets, and particles. A new class of compounds has been identified for use as nanofillers, boron cage compounds. Boron cage compounds are discrete, icosahedral closed cage molecules of high boron content and examples include carboranes and dodecaborate salts. Several chemically modified boron cage compounds have been incorporated into polyolefin elastomers, such as poly(ethylene-co-vinyl acetate), poly(ethylene-co-vinyl acetate-co-vinyl alcohol), poly(ethylene-co-ethyl acrylate), and poly(ethylene-co-octene), among others. The resulting thermal and thermomechanical properties were evaluated in order to determine when plasticization and reinforcement occur to better understand the chemical structure/physical property relationships. Materials with a wide range of properties were produced, however under certain conditions, advanced materials were created with high boron contents, improved thermal stability, mechanical strength, and significant reinforcement.