Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T08:22:05.706Z Has data issue: false hasContentIssue false

Development of ultrafast spectroscopic techniques to study rapid chemical and physical changes in materials under extreme pressure and temperature conditions

Published online by Cambridge University Press:  12 January 2012

Alexander F. Goncharov
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington, DC 20015, U.S.A.
D. Allen Dalton
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington, DC 20015, U.S.A.
R. Stewart McWilliams
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington, DC 20015, U.S.A. Howard University, Washington, DC, 20059, U.S.A.
Mohammad F. Mahmood
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington, DC 20015, U.S.A. Howard University, Washington, DC, 20059, U.S.A.
Get access

Abstract

In the study of materials at extreme pressures and temperatures, there is an enduring need to extend the range of experiments to previously inaccessible regimes. To accomplish this, improvements in diagnostics for in situ material characterization at extremes must proceed in parallel with techniques used to generate extreme states. Simultaneously, there is a need to study material phenomena – e.g. phase transformations and chemical reactions triggered by the application of extreme conditions – on their natural timescales. Here we report on recent developments in the application of ultrafast laser spectroscopic techniques to high-pressure hightemperature experiments on materials confined in a diamond-anvil cell. Using a bright broadband source coupled to ultrafast detection to discriminate signal from high thermal and fluorescent backgrounds, we conducted broadband optical spectroscopy up to 60 GPa and 1560 K. By coupling the broadband source to a monochromatic pulse, nonlinear Coherent Anti- Stokes Raman Spectroscopy (CARS) with high signal brightness was achieved. Optical absorption data in hot compressed O2 and CARS data in N2 at extreme pressures are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goncharov, A.F. and Crowhurst, J.C., J. Low Temp. Phys., 139, 727 (2005).Google Scholar
2. Beck, P., Goncharov, A.F., Struzhkin, V.V., Militzer, B., Mao, H.-k., and Hemley, R.J., Appl. Phys. Lett., 91, 181914 (2007).Google Scholar
3. Goncharov, A.F., Prakapenka, V.B., Struzhkin, V.V., Kantor, I., Rivers, M.L., and Dalton, D.A., Rev. Sci. Instrum., 81, 113902 (2010).Google Scholar
4. Goncharov, A.F., Crowhurst, J.C., Struzhkin, V.V., and Hemley, R.J., Phys. Rev. Lett., 101, 095502 (2008).Google Scholar
5. Dudley, J.M., Genty, G., and Coen, S., Rev. Mod. Phys., 78, 1135 (2006).Google Scholar
6. Montoya, J.A. and Goncharov, A.F., “ Finite element calculations of the time dependent thermal fluxes in the laser-heated diamond anvil cell”. submitted to J. Appl. Phys., (2011).Google Scholar
7. Santoro, M., Gregoryanz, E., Mao, H.-k., and Hemley, R.J., Solid State Commun., 144, 225 (2007).Google Scholar
8. Desgreniers, S., Vohra, Y.K., and Ruoff, A.L., J. Phys. Chem., 94, 1117 (1990).Google Scholar
9. Weck, G., Loubeyre, P., Eggert, J.H., Mezouar, M., and Hanfland, M., Phys. Rev. B, 76, 054121 (2007).Google Scholar
10. Goncharov, A.F., Subramanian, N., Ravindran, T.R., Somayazulu, M., Prakapenka, V.B., and Hemley, R.J., J. Chem. Phys., 135, 084512 (2011).Google Scholar
11. Bastea, M., Mitchell, A.C., and Nellis, W.J., Phys. Rev. Lett., 86, 3108 (2001).Google Scholar
12. Apetz, R. and van Bruggen, M.P.B., J. Am. Ceram. Soc., 86, 480 (2003).Google Scholar
13. Hellwig, H., Daniels, W.B., Hemley, R.J., Mao, H.-k., Gregoryanz, E., and Yu, Z., J. Chem. Phys., 115, 10876 (2001).Google Scholar
14. Baer, B.J. and Yoo, C.-S., Rev. Sci. Instr., 76, 013907 (2005).Google Scholar
15. Baer, B.J., Evans, W.J., and Yoo, C.-S., Phys. Rev. Lett., 98, 235503 (2007).Google Scholar
16. Kano, H. and Hamaguchi, H.-o., Appl. Phys. Lett., 85, 4298 (2004).Google Scholar