Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T10:02:37.408Z Has data issue: false hasContentIssue false

Device Analysis of Cu(In,Ga)Se2 Heterojunction Solar Cells - Some Open Questions

Published online by Cambridge University Press:  21 March 2011

U. Rau
Affiliation:
Institute of Physical Electronics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
K. Weinert
Affiliation:
Institute of Physical Electronics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Q. Nguyen
Affiliation:
Institute of Physical Electronics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
M. Mamor
Affiliation:
Institute of Physical Electronics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
G. Hanna
Affiliation:
Institute of Physical Electronics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
A. Jasenek
Affiliation:
Institute of Physical Electronics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
H. W. Schock
Affiliation:
Institute of Physical Electronics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Get access

Abstract

The paper discusses the electronic properties of Cu(In,Ga)Se2–based heterojunction solar cells with a special focus on questions which at present are not satisfactorily understood. First, we discuss an apparent quantitative contradiction between measured concentrations of recombination centers in the Cu(In,Ga)Se2 absorber material and the actual recombination rate in the solar cells. We propose, as a possible explanation for that observation, that the defect concentration in Cu(In,Ga)Se2 is spatially inhomogeneous with a systematic increase towards the heterojunction interface. Second, we address the issue of electronic metastabilities in ZnO/CdS/Cu(In,Ga)Se2 heterojunctions and, especially, in devices that use alternative buffer materials instead of CdS. Starting from a brief review of the experimentally observed types of metastabilities, we demonstrate by thermally stimulated capacitance measurements that a specific type of metastability that severely limits the performance of solar cells with non-CdS buffers is present also in high-efficiency standard devices though it has virtually no influence on the output parameters in the latter case. A possible explanation of this type of metastability points to a metastable defect reaction localized in the close to surface region of Cu(In,Ga)Se2. At the moment we cannot propose conclusive models for both open questions. However, we can localize the answers to both problems in the close-to-surface region of the Cu(In,Ga)Se2 absorber.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shockley, W. and Queisser, H. J. J. Appl. Phys. 32, 510 (1961).Google Scholar
2. Rau, U., Schmidt, M., Jasenek, A., Hanna, G., and Schock, H. W., Sol. Ener. Mat. Sol. Cells 67, 137 (2001).Google Scholar
3. Hanna, G., Jasenek, A., Rau, U., Schock, H. W., Phys. Stat. Sol. (a) 179, R7 (2000).Google Scholar
4. Jasenek, A., Rau, U., Nadenau, V., Schock, H. W., J. Appl. Phys. 87 594 (2000).Google Scholar
5. Siemer, K., Kneissel, J., Luck, I., Klaer, J., Scheer, R., Klenk, R., Bräunig, D., Jpn. J. Appl. Phys. (in print).Google Scholar
6. Kötschau, I. M., Turcu, M., Rau, U., Schock, H. W., these proceedings.Google Scholar
7. Jasenek, A. et al., Appl. Phys. A70, 677 (2000); also these proceedings.Google Scholar
8. Rau, U., Appl. Phys. Lett. 74, 111 (1999); U. Rau, A. Jasenek, H. W. Schock, F. Engelhardt, Th. Meyer, Thin Solid Films 361-362 (2000) 299.Google Scholar
9. Walter, T., Herberholz, R., Müller, C., Schock, H. W., J. Appl. Phys. 80, 4411 (1996).Google Scholar
10. Herberholz, R., Igalson, M., Schock, H. W., J. Appl. Phys. 83, 318 (1998).Google Scholar
11. Niemeegers, A. and Burgelman, M., in Proc. 25th IEEE Photovolt. Spec. Conf. (IEEE, New York, 1996) p. 901.Google Scholar
12. Rau, U. and Schock, H. W., Appl. Phys. A 69, 131 (1999).Google Scholar
13. Ohnesorge, B., Weigand, R., Bacher, G., Forchel, A., Riedl, W., Karg, F., Appl. Phys. Lett. 73, 1224 (1998).Google Scholar
14. Werner, J. H. and Güttler, H. H. J. Appl. Phys. 69, 1522 (1991).Google Scholar
15. Schmid, D., Ruckh, M., Grunwald, F., Schock, H.-W., J. Appl. Phys. 73, 2902 (1993).Google Scholar
16. Niemeegers, A., Burgelman, M., Herberholz, R., Rau, U., Hariskos, D., Schock, H. W., Prog. Photovolt. Res. Appl. 6, 407 (1998).Google Scholar
17. Hasoon, F. S., Yan, Y., Althani, H., Jones, K. M., Moutinho, H. R., Alleman, J., Al-Jassim, M. M., Noufi, R., Thin Solid Films 387, 1 (2001).Google Scholar
18. Ruberto, M. N. and Rothwarf, A., J. Appl. Phys. 61, 4662 (1987).Google Scholar
19. Rau, U., Jasenek, A., Herberholz, R., Schock, H. W., Guillemoles, J.-F., Lincot, D., Kronik, L., in Proc. 2nd World Conf. Photov. Energy Conv., (E.C. Joint Res. Centre, Luxembourg, 1998), p. 428.Google Scholar
20. Zabierowski, P., Rau, U., Igalson, M., Thin Solid Films 387, 147 (2001).Google Scholar
21. Rau, U., Schmitt, M., Parisi, J., Riedl, W., Karg, F., Appl. Phys. Lett. 73, 223 (1998).Google Scholar
22. Meyer, Th., Schmidt, M., Engelhardt, F., Parisi, J., Rau, U., Eur. Phys. J. AP 8, 43 (1999).Google Scholar
23. Lang, D. V. and Logan, R. A., Phys. Rev. Lett. 39, 635 (1977).Google Scholar
24. Igalson, M. and Zabierowski, P., these proceedings.Google Scholar
25. Cahen, D. and Chernyak, L., Adv. Mater. 9, 861 (1997).Google Scholar
26. Ohtake, Y., Kushiya, K., Ichikawa, M., Yamada, A., Konagai, M., Jpn. J. Appl. Phys. 34, 5949 (1995).Google Scholar
27. Ohtake, Y., Ichikawa, M., Yamada, A., Konagai, M., in Proc.13th Europ. Photovolt. Solar Energy Conf. (Stephens, Bedford, 1995) p. 2088.Google Scholar
28. Ohtake, Y., Ichikawa, M., Okamoto, T., Yamada, A., Konagai, M., Saito, K., in Proc. 25th IEEE Photovolt. Spec. Conf. (IEEE, New York, 1996) p. 793.Google Scholar
29. Konagai, M., Ohtake, Y., Okamoto, T., Mat. Res. Soc. Symp. Proc. 426, 411 (1996).Google Scholar
30. Kushiya, K., Nii, T., Sugiyama, I., Sato, Y., Inamori, Y., Takeshita, H., Jpn. J. Appl. Phys. 35, 4383 (1996).Google Scholar
31. Kushiya, K., Tachiyuki, M., Kase, T., Nagoya, Y., Miura, T., Okumura, D., Satoh, M., Sugiyama, I., Yamase, O.., in Proc. 26th IEEE Photovolt. Spec. Conf. (IEEE, New York, 1997) p. 327.Google Scholar
32. Chaisitsak, S., Sugiyama, T., Yamada, A., Saito, K., Jpn. J. Appl. Phys. 38, 4989 (1999).Google Scholar
33. Nakada, T., Furumi, K., Kunioka, A., IEEE Trans. on Electron. Devices 46, 2093 (1999).Google Scholar
34. Nakada, T. and Mizutani, M., in Proc. 28th IEEE Photovolt. Spec. Conf. (in print).Google Scholar
35. Kushiya, K. and Yamase, O., Jpn. J. Appl. Phys. 39, 2577 (2000).Google Scholar
36. Chaisitsak, S., Yamada, A., Konagai, M., Saito, K., Jpn. J. Appl. Phys. 39, 16604 (2000).Google Scholar
37. Shimizu, A., Chaisitsak, S., Sugiyama, T., Yamada, A., Konagai, M., Thin Solid Films 361–362, 193 (2000).Google Scholar
38. Huang, C. H. et al., in Techn. Digest 11th Intern. Photov. Science and Engineering Conf. (Tokyo University of Agriculture & Techn, Tokyo, 1999) p. 855.Google Scholar
39. Hariskos, D., Ruckh, M., Rühle, U., Walter, T., Schock, H.-W., Hedström, J., Stolt, L., Sol. Ener. Mat. Sol. Cells 41/42, 345 (1996).Google Scholar
40. Cahen, D. and Noufi, R., Appl. Phys. Lett. 54, 558 (1989); Solar Cells 30, 53 (1991)Google Scholar
41. Rau, U., Braunger, D., Herberholz, R., Schock, H. W., Guillemoles, J.-F., Kronik, L., Cahen, D. J. Appl. Phys. 86, 497 (1994).Google Scholar
42. Ramanathan, K., Wiesner, H., Asher, S., Niles, D., Bhattacharya, R. N., Keane, J., Contreras, M. A., Noufi, R., in Ref. [19] p. 477.Google Scholar
43. Wada, T., Hayashi, S., Hashimoto, Y., Nishiwaki, S, Sato, T., Nishitina, M., in Ref. [19] p. 403.Google Scholar
44. Nakada, T. and Kunioka, A., Appl. Phys. Lett. 74, 2444 (1999).Google Scholar
45. Heske, C. et al., Appl. Phys. Lett. 74, 1451 (1999).Google Scholar
46. Ramanathan, K., Dhere, R., Bhattacharya, R., Haason, F., Contreras, M., Noufi, R., Jpn. J. Appl. Phys. (in print).Google Scholar
47. Topic, M., Smole, F., Furlan, J., Sol. Ener. Mat. Sol. Cells 49, 311 (1997).Google Scholar
48. Eisgruber, I. L., Granata, J. E., Sites, J. R., Hou, J., Kessler, J., Sol Ener. Mat. Sol. Cells 53, 367 (1998).Google Scholar