Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T01:03:10.638Z Has data issue: false hasContentIssue false

Diamond-like Carbon Film Coating for Tissue Engineering

Published online by Cambridge University Press:  01 February 2011

Yasuharu Ohgoe
Affiliation:
yas@f.dendai.ac.jp, Tokyo Denki University, Div. of Life Sci. & Eng., Saitama, United States
Haruki Matsuo
Affiliation:
h_matsuo@ff.f.dendai.ac.jp, Tokyo Denki University, Saitama, Japan
Kazuhiro Nonaka
Affiliation:
kazuhiro@ff.f.dendai.ac.jp, Tokyo Denki University, Saitama, Japan
Toshiyuki Yaguchi
Affiliation:
yaguchi@f.dendai.ac.jp, Tokyo Denki University, Div. of Life Sci. & Eng., Saitama, United States
Kazuya Kanasugi
Affiliation:
kazukazu@ff.f.dendai.ac.jp, Tokyo Denki University, Saitama, Japan
Kenji Hirakuri
Affiliation:
hirakuri@eee.dendai.ac.jp, Tokyo Denki University, Dep. of Electrical and Electronics Eng., Tokyo, Japan
Akio Funakubo
Affiliation:
funakubo@mail.dendai.ac.jp, Tokyo Denki University, Div. of Life Sci. & Eng., Saitama, Japan
Yasuhiro Fukui
Affiliation:
fukui@f.dendai.ac.jp, Tokyo Denki University, Div. of Life Sci. & Eng., Saitama, Japan
Get access

Abstract

In this study, we focus on effect of diamond-like carbon (DLC) coating on scaffold for tissue engineering. DLC film was deposited on segmented polyurethane (SPU) scaffold sheet which consists of micro SUP fibers. Structural and compositional effects of the DLC film coating were investigated on cell growth as an investigation of biological response. The surface composition, morphology, structures, and wettability of the DLC film coating was estimated by using X-ray photoelectron spectrometer (XPS), Scanning Electron Microscope (SEM), Ar-laser Raman spectrophotometer (Raman), and contact angle measurement. And then, human umbilical vein endothelial (HUV-EC-C) cells were grown on the DLC coated scaffold sheet. The results presented here suggest that DLC film coating is promising approach to improve biological for tissue engineering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Prasad, C. K., Krishnan, L. K., Acta Biomaterialia 4, 182 (2008).Google Scholar
2. Caracciolo, P.C., de Queiroz, A. A. A., Higa, O. Z., Buffa, F., Abraham, G. A., Acta Biomaterialia 4, 976 (2008).Google Scholar
3. Robertson, J., Diamond Relat. Mater. 12, 79 (2003).Google Scholar
4. Shimura, K. and Baba, K., Jpn. J. Appl. Phys. 39, 626 (2000).Google Scholar
5. Deng, J., and Braun, M., Diamond Relat. Mater. 4, 936 (1995).Google Scholar
6. Grill, A., Diamond Relat. Mater. 12, 166 (2003).Google Scholar
7. Tiainen, V. M., Diamond Relat. Mater. 10, 153 (2001).Google Scholar
8. Tamor, M. A., Vassell, W. C., and Carduner, K. R., Appl. Phys. Lett. 58, 592 (1991).Google Scholar
9. Robertson, J., Mat. Sci. Eng. R 37, 129 (2002).Google Scholar
10. Grill, A., Patel, V., Appl. Phys. Lett. 60, 2089 (1998).Google Scholar
11. Ferrari, A. C., Robertson, J.. Phys. Rev. B, 61, 14095 (2000).Google Scholar
12. Taki, Y., Takai, O., Thin solid films 316, 45 (1998).Google Scholar
13. Nitta, Y., Okamoto, K., Nakatani, T., Hoshi, H., Homma, A., Tatsumi, E., Taenaka, Y., Diamond Relat. Mater. 17, 1972 (2008).Google Scholar
14. Kubová, O., Švorčik, V., Heitz, J., Moritz, S., Romanin, Ch., Matějka, P., Macková, A., Thin solid films 515, 6765 (2007).Google Scholar
15. Arnold, M., Cavalcanti-Adam, E.A., Glass, R., Blummel, J., Eck, W., Kantlehner, M., Kessler, H. and Spatz, J.P., ChemPhysChem 5, 383 (2004).Google Scholar