Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T06:10:51.108Z Has data issue: false hasContentIssue false

Dicyanamide Ionic Liquids: A Versatile Precursor System for Advanced Mesoporous Materials and Functional Composites

Published online by Cambridge University Press:  25 October 2012

Jens Peter Paraknowitsch
Affiliation:
Technical University of Berlin, Institute of Chemistry, Functional Materials Division, Hardenbergstr. 14, 10623 Berlin, Germany
Xenia Tuaev
Affiliation:
Technical University of Berlin, Institute of Chemistry, Chemical and Materials Engineering Division, Str. des 17. Juni 124, 10623 Berlin, Germany
Peter Strasser
Affiliation:
Technical University of Berlin, Institute of Chemistry, Chemical and Materials Engineering Division, Str. des 17. Juni 124, 10623 Berlin, Germany
Arne Thomas
Affiliation:
Technical University of Berlin, Institute of Chemistry, Functional Materials Division, Hardenbergstr. 14, 10623 Berlin, Germany
Get access

Abstract

Ionic liquids (ILs) are highly suitable to act as precursors for nitrogen-doped carbon materials. Therefore two structural requirements must be fulfilled: On the one hand, the cation should carry nitrogen in a preferably aromatic environment, on the other hand nitrile groups are essential that can be e.g. incorporated by dicyanamide anions. Thermolysis of such ILs yields highly conductive nitrogen doped carbon exhibiting a graphitic microstructure. Furthermore, various nanomorphologies can be induced via hard-templating. The material has been shown to sufficiently suppress growth and agglomeration of Pt nanoparticles upon their electrocatalytic performance, when applied as a thin coating on the Pt host material. This novel concept of reactivity could further be applied in other fields of materials synthesis, paving the way for the one-pot synthesis of mesoporous carbon/silica composites and in-situ metal doping thereof.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kuhn, P., Antonietti, M. and Thomas, A., Angewandte Chemie International Edition 47, 34503453 (2008).10.1002/anie.200705710CrossRefGoogle Scholar
Kuhn, P., Forget, A., Su, D.S., Thomas, A. and Antonietti, M., Journal of the American Chemical Society 130(40), 1333313337 (2008).10.1021/ja803708sCrossRefGoogle Scholar
Irran, E., Jurgens, B. and Schnick, W., Chemistry-a European Journal 7(24), 53725381 (2001).10.1002/1521-3765(20011217)7:24<5372::AID-CHEM5372>3.0.CO;2-#3.0.CO;2-#>CrossRef3.0.CO;2-#>Google Scholar
Jurgens, B., Irran, E., Schneider, J. and Schnick, W., Inorganic Chemistry 39(4), 665670 (2000).10.1021/ic991044fCrossRefGoogle Scholar
Jurgens, B., Milius, W., Morys, P. and Schnick, W., Zeitschrift Fur Anorganische Und Allgemeine Chemie 624(1), 9197 (1998).10.1002/(SICI)1521-3749(199801)624:1<91::AID-ZAAC91>3.0.CO;2-I3.0.CO;2-I>CrossRef3.0.CO;2-I>Google Scholar
Paraknowitsch, J.P., Thomas, A. and Antonietti, M., Journal of Materials Chemistry 20(32), 67466758 (2010).10.1039/c0jm00869aCrossRefGoogle Scholar
Paraknowitsch, J.P., Zhang, J., Su, D.S., Thomas, A. and Antonietti, M., Advanced Materials 22(1), 8792 (2010).10.1002/adma.200900965CrossRefGoogle Scholar
Lee, J.S., Wang, X.Q., Luo, H.M. and Dai, S., Advanced Materials 22(9), 10041007 (2010).10.1002/adma.200903403CrossRefGoogle Scholar
Wang, X.Q. and Dai, S., Angewandte Chemie-International Edition 49(37), 66646668 (2010).10.1002/anie.201003163CrossRefGoogle Scholar
Lee, J.S., Wang, X.Q., Luo, H.M., Baker, G.A. and Dai, S., Journal of the American Chemical Society 131(13), 45964597 (2009).10.1021/ja900686dCrossRefGoogle Scholar
Yang, W., Fellinger, T.P. and Antonietti, M., Journal of the American Chemical Society 133(2), 206209 (2011).10.1021/ja108039jCrossRefGoogle Scholar
Zhao, L., Hu, Y.S., Li, H., Wang, Z.X. and Chen, L.Q., Advanced Materials 23(11), 13851388 (2011).10.1002/adma.201003294CrossRefGoogle Scholar
Tuaev, X., Paraknowitsch, J.P., Illgen, R., Thomas, A. and Strasser, P., Physical Chemistry Chemical Physics 14, 64446447 (2012).10.1039/c2cp40760dCrossRefGoogle Scholar
Hasché, F., Fellinger, T.-P., Oezaslan, M., Paraknowitsch, J.P., Antonietti, M. and Strasser, P., ChemCatChem 4, 479483 (2012).10.1002/cctc.201100408CrossRefGoogle Scholar
Paraknowitsch, J.P., Zhang, Y.J. and Thomas, A., Journal of Materials Chemistry 21, 1553715543 (2011).10.1039/c1jm11633aCrossRefGoogle Scholar
Paraknowitsch, J.P., Sukhbat, O., Zhang, Y.J. and Thomas, A., European Journal of Inorganic Chemistry, DOI: 10.1002/ejic.201200680 (2012).Google Scholar
Fukushima, T. and Aida, T., Chemistry – A European Journal 13(18), 50485058 (2007).10.1002/chem.200700554CrossRefGoogle Scholar
Acharya, C.K., Sullivan, D.I. and Turner, C.H., The Journal of Physical Chemistry C 112(35), 1360713622 (2008).10.1021/jp8034488CrossRefGoogle Scholar
Zhou, Y., Neyerlin, K., Olson, T.S., Pylypenko, S., Bult, J., Dinh, H.N., Gennett, T., Shao, Z. and O’Hayre, R., Energy & Environmental Science 3(10), 14371446 (2010).10.1039/c003710aCrossRefGoogle Scholar
Cai, Q., Luo, Z.S., Pang, W.Q., Fan, Y.W., Chen, X.H. and Cui, F.Z., Chemistry of Materials 13(2), 258263 (2001).10.1021/cm990661zCrossRefGoogle Scholar
Grun, M., Lauer, I. and Unger, K.K., Advanced Materials 9(3), 254257 (1997).10.1002/adma.19970090317CrossRefGoogle Scholar
Lin, H.P., Cheng, Y.R. and Mou, C.Y., Chemistry of Materials 10(12), 37723776 (1998).10.1021/cm980493vCrossRefGoogle Scholar
Lin, H.P. and Mou, C.Y., Accounts Chem. Res. 35(11), 927935 (2002).10.1021/ar000074fCrossRefGoogle Scholar
Batten, S.R. and Murray, K.S., Coordination Chemistry Reviews 246(1-2), 103130 (2003).10.1016/S0010-8545(03)00119-XCrossRefGoogle Scholar
Batten, S.R., Jensen, P., Moubaraki, B., Murray, K.S. and Robson, R., Chemical Communications, 439440 (1998).10.1039/a707264cCrossRefGoogle Scholar
Jensen, P., Batten, S.R., Fallon, G.D., Hockless, D.C.R., Moubaraki, B., Murray, K.S. and Robson, R., J. Solid State Chem. 145(2), 387393 (1999).10.1006/jssc.1998.8082CrossRefGoogle Scholar
Jensen, P., Batten, S.R., Moubaraki, B. and Murray, K.S., J. Solid State Chem. 159(2), 352361 (2001).10.1006/jssc.2001.9164CrossRefGoogle Scholar
Marshall, S.R., Incarvito, C.D., Manson, J.L., Rheingold, A.L. and Miller, J.S., Inorganic Chemistry 39(9), 19691973 (2000).10.1021/ic991244rCrossRefGoogle Scholar
Batten, S.R., Jensen, P., Moubaraki, B. and Murray, K.S., Chemical Communications (23) 23312332 (2000).10.1039/b007080gCrossRefGoogle Scholar
Raebiger, J.W., Manson, J.L., Sommer, R.D., Geiser, U., Rheingold, A.L. and Miller, J.S., Inorganic Chemistry 40(11), 25782581 (2001).10.1021/ic001379tCrossRefGoogle Scholar
Tong, M.L., Ru, J., Wu, Y.M., Chen, X.M., Chang, H.C., Mochizuki, K. and Kitagawa, S., New J. Chem. 27(5), 779792 (2003).10.1039/b300760jCrossRefGoogle Scholar