Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T06:00:46.786Z Has data issue: false hasContentIssue false

Dielectric Charging in Low Temperature Silicon Nitride for RF-MEMS Capacitive Switches

Published online by Cambridge University Press:  01 February 2011

Richard Daigler
Affiliation:
School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA, 30332
George Papaioannou
Affiliation:
gpapaioan@phys.uoa.gr, University of Athens, Physics, Solid State Physics Section, Panepistimiopolis, Zografos, Athens, 15784, Greece, +302107276817 or +302107276722, +302107276711
Eleni Papandreou
Affiliation:
elpapand@yahoo.gr, University of Athens, Physics, Solid State Physis Section, Panepistimiopolis - Zografos, Athens, 15784, Greece
John Papapolymerou
Affiliation:
papapol@ece.gatech.edu, Georgia Institute of Technology, School of Electrical and Computer Engineering, 777 Atlantic Drive NW, Atlanta, GA, 30332, United States
Get access

Abstract

The paper presents a systematic investigation of dielectric charging in low temperature silicon nitride for RF-MEMS capacitive switches. The investigation takes includes both the effect of dielectric film thickness as well as the effect of metal contacts. The investigation demonstrates that the charging process is asymmetric. It is shown that the amount of stored charge depends significantly on the dielectric film thickness, which is caused from the contribution of the space charge polarization mechanism. Finally, the results are compared with those of higher temperature silicon nitride.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wibbeler, J, Pfeifer, G and Hietschold, M, Sensors and Actuators A 71, 74 (1998)Google Scholar
2. Rebeiz, G. M.RF MEMS Theory, Design and Technology”, Haboken, New Jersey: J. Willey and Sons, 2003 Google Scholar
3. Yuan, X. Peng, Z. Hwang, J. C. M. Forehand, D. and Goldsmith, C. L. IEEE MTT-S Int. Microwave Symp. Digest 2006, pp. 47 Google Scholar
4. Yuan, X. Peng, Z. Hwang, J. C. M. Forehand, David and Goldsmith, Charles L. IEEE Trans. on Device and Materials Reliability 6, 556 (2006)Google Scholar
5. Blondy, P. Crunteanu, A. Pothier, A. Tristant, P. Catherinot, A. Champeaux, C. European Microwave Integrated Circuits Conference, EuMW, pp 548551, 2007 Google Scholar
6. Crunteanu, A. Dumas-Bouchiat, F., Champeaux, C. Catherinot, A. and Blondy, P. Thin Solid Films 515, 6324 (2007)Google Scholar
7. Yang, W.S. and Kang, S.W. Thin solid films 231-236, 500 (2006)Google Scholar
8. Papaioannou, G. J. Exarchos, M. Theonas, V. Wang, G. and Papapolymerou, J. IEEE Transactions on Microwave Theory and Techniques 53, 3467 (2005)Google Scholar
9. Exarchos, M. Theonas, V. Pons, P. Papaioannou, G.J. Melle, S. Dubuc, D. Cocetti, F. and Plana, R., Microelectronics Reliability 45, 1782 (2005)Google Scholar
10. Lamhamdi, M., Guastavino, J., Boudou, L., Segui, Y., Pons, P., Bouscayrol, L. and Plana, R. Microelectronics Reliability 46, 1700 (2006)Google Scholar
11. Exarchos, M. Papandreou, E. Pons, P. Lamhamdi, M. Papaioannou, G.J. and Plana, R. Microelectronics Reliability 46, 1695 (2006)Google Scholar
12. Papaioannou, G. Papapolymerou, J. Pons, P. and Plana, R. Applied Physics Letters 90, 233507 (2007)Google Scholar
13. Papandreou, E. Lamhamdi, M. Skoulikidou, C.M. Pons, P. Papaioannou, G. and Plana, R. Microelectronics Reliability 47, 1812 (2007)Google Scholar
14. Papaioannou, G. J. and Lisec, T. Proceedings of the 2nd European Microwave Integrated Circuits Conference, pp 540543, 2007 Google Scholar
15. Melle, S. Conto, D. De, Dubuc, D. Grenier, K. Vendier, O. Muraro, J.L. Cazaux, J.L. and Plana, R., Reliability Modeling of Capacitive RF MEMS, IEEE Tans. on Microwave Theory and Techniques 53, 3482, (2005)Google Scholar
16. Shannon, J. M. and Morgan, B. A. Applied Phys. Letters 86, 1548, (1999)Google Scholar
17. Lau, S.P. and Shannon, J.M. Journal of Non-Crystalline Solids 266-269, 432, (2000)Google Scholar
18. Lau, S.P. Shannon, J.M. and Sealy, B.J. Journal of Non-Crystalline Solids 277230, 533, (1998)Google Scholar
19. Shannon, J. M. Deane, S. C. McGarvey, B. and Sandoe, J. N. Appl. Phys. Lett. 65, 2978, (1994)Google Scholar
20. Nieuwesteeg, K. J. B. M. Boogaard, J. and Oversluizen, G. and Powell, M. J. J. Appl. Phys. 71, 1290, (1992)Google Scholar
21. Venderschueren, J. and Casiot, J. Thermally Stimulated Relaxation in Solids, Braunlich, P. ed. (Springer-Verlag, 1979), pp. 143149 Google Scholar
22.http://www.kayelaby.npl.co.uk/atomic_and_nuclear_physics/4_3/4_3.htmlGoogle Scholar
23. Nagasaki, R. Hashizume, T. and Hasegawa, H. Physica E 7, 953 (2000)Google Scholar
24. Ramprasad, R. Physica Status Solidi (b) 239, 59, (2003)Google Scholar
25. Park, K. J. and Parsons, G. N. J. of Vacuum Science Technology A 22, 2256, (2004)Google Scholar