Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T08:53:17.443Z Has data issue: false hasContentIssue false

Dielectric Constants and Endurance of Chalcogenide Phase-Change Non-Volatile Memory

Published online by Cambridge University Press:  01 February 2011

Semyon D. Savransky
Affiliation:
chalcogenide_glasses@yahoo.com, The TRIZ Experts, Chalcogenides, 6015 Pepper Tree Court, Newark, CA, 94560, United States
Eugenio F. Prokhorov
Affiliation:
prokhorov@ciateq.net.mx, CINVESTAV, Unidad Querétaro, Querétaro, 76230, Mexico
Get access

Abstract

Initial attempts to create memory from chalcogenide glasses (g-Ch) had limited success particularly because the first generation of these materials (labeled as CG1) has inferior endurance (about 106 SET-RESET cycles). Recent progress in phase-change non-volatile memory (PC-RAM) related to superior properties of Ge2Sb2Te5 (GST) alloy [1,2]. The paper answers the vital for PC-RAM development question: “Why is endurance of GST memory cells (about 1011 cycles) much higher than of CG1 cells?” We show that superior endurance is related to features of –U centers [3] creation in GST during RESET of PC-RAM cells. The native –U centers exist in g-Ch due to the softness of atomic potentials [3]. They play a significant role in SET process of CG1 and GST [2,4]. The –U centers behavior in GST [5] is different compared with CG1 while other properties (threshold voltage, resistivity, etc.) are basically the same [1-4]. We found that dielectric permittivities e of CG1 and GST are also different.

The e values in Ge-Sb-Te alloys films have been determined from impedance measurements in sandwich samples using method described in [6] and reported in the paper. Amorphous GST has relatively high and distinct static and optical dielectric permittivities eo=16.5 and e'=15.3 to compare with CG1 where e practically independent on frequency. Hence the second term in the effective polarization potential Ep = q^2[(1-1/e')/r + (1/e' - 1/eo)/L] is strong (here r and L are the average atomic radius and interatomic bond distance, q is the electron charge). It allows to screen the Coulomb repulsion at an –U center quite effectively in GST. Therefore polarization helps –U centers creation in amorphous GST and impedes these centers formation in crystalline hexagonal GST films where eo=38 and e'=61. In contrast to CG1 [3], the creation and destruction of –U centers during RESET and SET processes in GST [4] are not accompanied by strong plastic mechanical stresses in a memory cell. This feature (higher barrier between elastic and plastic deformations) predetermines possibility of numerous SET-RESET cycles in this alloy. Therefore, the deformation mechanism of –U centers formation in CG1 leads to inferior endurance while the polarization mechanism of their creation in GST ensures decent endurance. Second factor is hybritization of –U centers with extended states can also play role in good memory alloys. Obtained experimental e values in non-stochiometric films allow to conclude about expected endurance in the framework of the proposed model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lai, S., IEDM '03 Technical Digest. 10.1.1 (2003)Google Scholar
2. Atwood, G. andBez, R., 63rd Device Research Conference Digest, 1, 29 (2005).Google Scholar
3. Savransky, S.D., J. Non-Crystall. Solids 101, 130 (1988); MRS Spring Meeting Abstracts, 267 (1995).Google Scholar
4. Ovshinsky, S. R., Phys. Rev. Lett. 21, 1450 (1968).Google Scholar
5. Adler, D.,Henisch, H. K., andMott, N., Rev. Mod. Physics, 50, 209 (1978).Google Scholar
6. Adler, D.,Shur, M. S.,Silver, M., and Ovshinsky, S. R., J. Appl. Phys. 51, 3289 (1980).Google Scholar
7. Pirovano, A.,Lacaita, A. L.,Benvenuti, A., Pellizzer, F., and Bez, R., IEEE Trans. Electron Devices 51, 452 (2004).Google Scholar
8. Savransky, S. D., J. Ovonic Res. 1(2), 25 (2005).Google Scholar
9. Savransky, S. D., 6th Non-Volatile Memory Technology Symposium, 105 (2005).Google Scholar
10. Ielmini, D., Mantegazza, D., Lacaita, A.L., Pirovano, A., and Pellizzer, F., Solid-State Electron., 49, 1826 (2005).Google Scholar
11. Morales-Sanchez, E., Prokhorov, E., Gonzalez-Hernandez, J., Vorobiev, Y., Rangel, J. Horta, andKostylev, S., Vacuum 70, 483 (2003).Google Scholar
12. Jung, E. J.,Do, K. H.,Lee, B. H.,Kwon, J. S., and Ko, D.H.. Meet. Abstr. – Electrochem. Soc. 502, 58 (2006)Google Scholar
13. Sakai, H., Shimakawa, K. Inagaki, Y., and Arizumi, T.. Jap. J. Appl. Phys. 13, 500 (1974).Google Scholar
14. Anderson, P. W., Phys. Rev. Lett. 34, 953 (1975).Google Scholar
15. Street, R. A. andMott, N. F., Phys. Rev. Lett. 35, 1293 (1975).Google Scholar
16. Kastner, M.,Adler, D., andFritzsche, H., Phys. Rev. Lett. 37, 1504 (1976).Google Scholar
17. Economou, E. N.,Ngai, K. L., andReinecke, T. L., Phys. Rev. Lett. 39, 157 (1977).Google Scholar
18. Bishop, S. G.,Strom, U., andTaylor, P. C., Phys. Rev. B, 15, 2278 (1977).Google Scholar
19. Baranovskii, S. D. andKarpov, V. G., Sov. Phys. Semiconductors 21, 1 (1987).Google Scholar
20. Drabkin, I. A. and Ya Moyzhes, B., Sov. Phys. Semiconductors 15, 357 (1981).Google Scholar
21. Olson, J. K.,Li, H.,Ju, T.,DeLong, M. C., and Taylor, P. C. J. Appl. Phys. 2006 (in press).Google Scholar
22. Kolobov, A. V.,Fons, P.,Frenkel, A. I.,Ankudinov, A. L., Tominaga, J., and Uruga, T., Nature Materials 3, 703 (2004).Google Scholar
23. Mendoza-Galván, A. and González-Hernández, J., J. Appl. Phys., 87, 760 (2000).Google Scholar
24. Morales-Sánchez, E., Prokhorov, E. F., Mendoza-Galván, A., and González-Hernández, J. J. Appl. Phys., 91, 697 (2002).Google Scholar
25. Mott, N. F and Davis, E. A. Electronic Processes in Non-Crystalline Materials, 2nd ed. (Clarendon, Oxford, 1979), p.590.Google Scholar
26. Lee, B.S.,Abelson, J. R.,Bishop, S. G.,Kang, D.H.,Cheong, B., andKim, K.B., J. Appl. Phys. 97, 093509 (2005).Google Scholar
27. Savransky, S. D., Phil. Mag. Lett. 66, 91 (1992).Google Scholar
28. Marcus, R. A., Rev. Mod. Phys. 65, 599 (1993)Google Scholar
29. Beattie, A.G.,Johnson, R.T., andQuinn, R.K., 5th International Conference on amorphous and liquid semiconductors, edited by Stuke, J. and Brenig, W. (Conf. Proc. 2, Garmisch-Partenkirchen, 1974), pp. 881887.Google Scholar
30. Levy, A W, Green, M, and Gee, W, J. Phys. C: Solid State Phys. 7, 352 (1974).Google Scholar
31. Frye, R. C. andAdler, D., Phys. Rev. Lett. 46 1027 (1981)Google Scholar
32. Tver'yanovich, Yu. S. andGutenev, M. S., Magneto-chemistry of glassy semiconductors, (St.Petersburg, St.Petersburg State Univiversity, 1996) 149 pp. (in Russian).Google Scholar
33. Blinov, L. N., Chemistry and physics of chalcogenide vitreous materials, (St.Petersburg, St.Petersburg State Univiversity, 2003) 209 pp. (in Russian).Google Scholar