Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T09:20:42.907Z Has data issue: false hasContentIssue false

Dielectric Response of a Chain of Disordered Polarizable Spheres: Numerical Simulation and Theory

Published online by Cambridge University Press:  25 February 2011

Pedro VillaseiÑor-Gonzalez
Affiliation:
Instituto de Física, Universidad Autónoma de San Luis Potosí, 78000 San Luis Potosí, Míxico
Cecilia Noguez
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México, 01000 México D.F., México Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000 México D.F., México
Ruben G. Barrera
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000 México D.F., México
Get access

Abstract

We applied to a one-dimensional system (1D) a recently developed diagrammatic formalism, in order to calculate the effective dielectric response of a chain of polarizable spheres embeded in an homogeneous host. The effective response is calculated within the dipolar, quasi-static approximation, through the summation of selected classes of diagrams. We compared our results with a numerical simulation, where the position of each sphere was generated at random and the induced dipole moment of each sphere was calculated by solving a set of linear equations through matrix inversion and using periodic boundary conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example: “Electrical Transport and Optical Properties of Inhomogeneous Media”, AIP Conference Proceedings, Eds. Gerland, J.C. and Tanner, D.B. (American Institute of Physics, New York 1978); “Electrodynamics of Interfaces and Composite Systems”, Advanced Series in Surface Science, Vol. 4, Eds. R.G. Barrera and W.L. Mochin (World Scientific, Singapore, 1988); ETOPIM 2, Proceedings of the Second International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media, Eds. J. Lafait and D.B. Tanner (North Holland, Amsterdam, 1989).Google Scholar
2. Maxwell, J.C. Garnett, Philos. Trans. R. Soc. London 302, 385 (1904).Google Scholar
3. Tsang, L. and Kong, J.A., J. Appl. Phys. 53, 7162 (1982).CrossRefGoogle Scholar
4. Felderhof, B.U. and Jones, R.B., Z. Phys. B 62, 43 (1985); 62 215 (1986); 62, 225 (1986).Google Scholar
5. Kumar, S. and Cukier, R.I., J. Phys. Chem. 93, 4334 (1989); B. Cichocki and B.U. Felderhof. J. Chem. Phys. 90, 4960 (1989).Google Scholar
6. Barrera, R.G., Monsivais, G. and Mochin, W.L., Phys. Rev. B 38, 5371 (1988).CrossRefGoogle Scholar
7. Barrera, R.G., Monsivais, G., Mochèn, W.L. and Anda, E., Phys. Rev. B 39 9998 (1989).Google Scholar
8. Barrera, R.G., Noguez, C. and Anda, E.V., (to be published by J. Chem. Phys., January 1992.)Google Scholar
9. See for exemple, Robledo, A. and Rowlinson, J.S., Molec. Phys. 58, 711 (1986) and references therein.Google Scholar