Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T08:49:06.709Z Has data issue: false hasContentIssue false

A Differential Scanning Calorimetric Study of Carbide Transition in 10Cr Tempered Martensitic Steels

Published online by Cambridge University Press:  10 June 2015

H.C. Wang*
Affiliation:
Ruhr-Universität Bochum, Institute für Werkstoffe, Universitätsstr. 150, 44801 Bochum, Germany
Get access

Abstract

The process and kinetics of carbide precipitation upon tempering of an Fe-10Cr-0.15C (wt.%) alloy fabricated from high-purity components has been studied. Differential scanning calorimetry reveals three exotherms in a temperature range of 100-700°C. Using advanced electron microscopy and Kissinger analysis, the exothermic processes have been interpreted. Cementite precipitated first upon tempering at temperatures as low as 200°C; M7C3 and M23C6 appear at higher temperatures, precipitating at approximately the same time but on different sites (M7C3 within grains and laths and M23C6 on grain and lath boundaries). Subsequently, the more stable M23C6 coarsens at the expense of M7C3, which dissolves. The first exotherm was interpreted as being related to the precipitation of cementite whilst the other two overlapping exotherms were interpreted as relating to the concurrent precipitation and coarsening of M7C3 and M23C6, respectively. In-situ SEM and TEM observation is being conducted in order to obtain a more precise understanding and further validate the interpretation of the DSC results.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Saroja, S., Dasgupta, A., Divakar, R., Raju, S., Mohandas, E., Vijayalakshmi, M., Bhanu Sankara Rao, K. and Raj, B., J. Nucl. Mater. 409, 131139 (2011).CrossRefGoogle Scholar
Klueh, R. L. and Harries, D. R., High chromium ferritic and martensitic steels for nuclear applications. (ASTM International, 2001).CrossRefGoogle Scholar
Abe, F., Mater. Sci. Eng., A 319321, 770773 (2001).CrossRefGoogle Scholar
Maruyama, K., Sawada, K. and Koike, J.-i., ISIJ International 41, 641653 (2001).CrossRefGoogle Scholar
Masuyama, F., ISIJ International 41, 612625 (2001).CrossRefGoogle Scholar
Furtado, H. C., de Almeida, L. H. and Le May, I., Mater. Charact. 58, 7277 (2007).CrossRefGoogle Scholar
Smith, A. F., Met. Sci. Tech. 9, 375378, 425-429 (1975).Google Scholar
Danielsen, H. K. and Hald, J., in Energy Materials: Materials Science and Engineering for Energy Systems (Maney Publishing, 2006), Vol. 1, pp. 4957.Google Scholar
Golpayegani, A., Andrén, H.-O., Danielsen, H. and Hald, J., Mater. Sci. Eng., A 489, 310318 (2008).CrossRefGoogle Scholar
Inoue, A. and Masumoto, T., Metall. Trans. A 11, 739747 (1980).CrossRefGoogle Scholar
Park, J. M., Ryu, W. S. and Kang, Y. H., J. Nucl. Mater. 209, 221225 (1994).CrossRefGoogle Scholar
Das, K. and Bandyopadhyay, T. K., Scr. Mater. 44, 25972603 (2001).CrossRefGoogle Scholar
Cheng, L., Brakman, C. M., Korevaar, B. M. and Mittemeijer, E. J., Metall. Trans. A 19, 24152426 (1988).CrossRefGoogle Scholar
Morra, P. V., Böttger, A. J. and Mittemeijer, E. J., J. Therm. Anal. Calorim. 64, 905914 (2001).CrossRefGoogle Scholar
Dudova, N. and Kaibyshev, R., ISIJ International 51, 826831 (2011).CrossRefGoogle Scholar
Adler, P. and DeIasi, R., Metall. Mater. Trans. A 8, 11851190 (1977).CrossRefGoogle Scholar
Smith, G. W., Thermochimica Acta 313, 2736 (1998).CrossRefGoogle Scholar
Jackson, M. P., Starink, M. J. and Reed, R. C., Mater. Sci. Eng., A 264, 2638 (1999).CrossRefGoogle Scholar
Petch, N. J., Acta Crystallogr. 6, 9696 (1953).CrossRefGoogle Scholar
Shtansky, D. V., Nakai, K. and Ohmori, Y., Acta Mater. 48, 969983 (2000).CrossRefGoogle Scholar
Hillert, M. and Ågren, J., Scr. Mater. 50, 697699 (2004).CrossRefGoogle Scholar
Shtansky, D. V. and Inden, G., Acta Mater. 45, 28612878 (1997).CrossRefGoogle Scholar
Bjärbo, A. and Hättestrand, M., Metall. Mater. Trans. A 32, 1927 (2001).CrossRefGoogle Scholar
Bhadeshia, H. K. D. H., in Encyclopedia of Materials: Science and Technology (Second Edition) (Elsevier, Oxford, 2001), pp. 52035206.CrossRefGoogle Scholar
Bain, E. C. and Paxton, H. W., Alloying elements in steel. (American Society for Metals, 1961).Google Scholar
Kissinger, H. E., Journal of Research of the National Bureau of Standards 57, 217 (1956).CrossRefGoogle Scholar
Bhattacharyya, S. K. and Russell, K. C., Metall. Trans. 3, 21952199 (1972).CrossRefGoogle Scholar
Meisel, L. V. and Cote, P. J., Acta Metall. 31, 10531059 (1983).CrossRefGoogle Scholar
Elder, J. P., J. Therm Anal. 30, 657669 (1985).CrossRefGoogle Scholar
Budrugeac, P. and Segal, E., J. Therm. Anal. Calorim. 88, 703707 (2007).CrossRefGoogle Scholar
Svoboda, R. and Málek, J., J. Therm. Anal. Calorim. 115, 17 (2014).Google Scholar
Huang, C., Mei, X., Cheng, Y., Li, Y. and Zhu, X., J. Therm. Anal. Calorim. 116, 11531157 (2014).CrossRefGoogle Scholar
Sugihara, M., Yamazaki, Y., Takaki, S., Abiko, K. and Iijima, Y., Mater. Trans. 41, 8790 (2000).CrossRefGoogle Scholar
Braun, R. and Feller-Kniepmeier, M., Phys. Status Solidi A 90, 553561 (1985).CrossRefGoogle Scholar