Published online by Cambridge University Press: 21 February 2011
Samples of CaPuTi2O7 were prepared by cold pressing and sintering. Plutonium was substituted for zirconium in order to characterize radiation damage effects. The energy stored in a sample which had reached saturation in swelling after storage at ambient temperature was measured with a differential scanning calorimeter. The total energy of 6.6±0.1 cal/g is released over the range 485–715° C. The activation energy of annealing of the damage is 1.22±0.05 eV. The temperature dependence of the rate constant is described by kT= 5.96E4 exp(−1.22/kBT) s−1 where kB and T are the Boltzmann's constant and temperature(K) respectively. A sample stored at 600°C was similarly evaluated and showed no release of stored energy to the precision of the apparatus (±0.1 cal/g). These results are applied to analysis of waste incorporation in Synroc and are correlated with analogous parameters for other materials.
Work performed under the auspices of the U. S. Deparment of Energy.