Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T08:51:06.319Z Has data issue: false hasContentIssue false

Diffraction Anomalous Fine Structure: A New Technique for Probing Local Atomic Environment

Published online by Cambridge University Press:  15 February 2011

Ingrid J. Pickering
Affiliation:
Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, Bin 69, Stanford, CA 94309.
Michael Sansone
Affiliation:
Exxon Research and Engineering Company, Route 22 East, Annandale, NJ 08801.
James Marsch
Affiliation:
Exxon Research and Engineering Company, Route 22 East, Annandale, NJ 08801.
Graham N. George
Affiliation:
Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, Bin 69, Stanford, CA 94309.
Get access

Abstract

Diffraction anomalous fine structure (DAFS) is the fine structure in the intensity of an X-ray diffraction peak in the vicinity of an absorption edge. DAFS is measured by monitoring the intensity of a diffraction peak as a function of the incident X-ray energy as it is scanned through an absorption edge. It combines the short range structural sensitivity of X-ray absorption spectroscopy with the long range periodicity of X-ray diffraction, and can provide structural information which is not available from these techniques alone, or in combination. We present a methodology which allows extraction of a specific X-ray absorbance spectrum from the DAFS spectrum, and illustrate it for KMnO4. We also demonstrate the ability of DAFS to separate the contributions to the X-ray absorption spectrum of the tetrahedral and octahedral cobalt sites in the spinel Co3O4.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Bonse, U. and Hartman-Lotsch, I., Nucl. Instrum. Meth. 222, 185 (1984). (b) D. H. Templeton and L. K. Templeton, Acta. Cryst. A38, 62 (1982). (c) I. Arcon, A. Kodre and M. Hribar in X-ray Absorption Fine Structure (Hasnain, S.S. Ed., Publisher: Ellis Horwood, 1991) 1991 p. 728.CrossRefGoogle Scholar
2. Arcon, I., Kodre, A., Glavic, D. and Hribar, M., J. de Physique C9, 1105 (1987).Google Scholar
3. (a) Lye, R. C., Phillips, J. C., Kaplan, D., Doniach, S. and Hodgson, K. O., Proc. Natl. Acad. Sci. U.S.A. 77, 5884 (1980). (b) J. M. Guss, E. A. Merritt, R. P. Phizackerley, B. Hedman, M. Murata, K. O. Hodgson and H. C. Freeman, Science 241, 806 (1988). (c) J. Karle, Physics Today 1989, 22. (d) W. A. Hendrickson, Science 254, 51 (1991).CrossRefGoogle Scholar
4. Attfield, J. P., Nature 343, 46 (1990).CrossRefGoogle Scholar
5. Wilkinson, A. P., Cox, D. E. and Cheetham, A. K., Acta. Cryst. B47, 155 (1991).CrossRefGoogle Scholar
6. (a) Kwei, G. H., Von Dreel, R. B., Williams, A., Goldstone, J. A., Lawson, A. C. II and Warburton, W. K., J. Mol. Struct. 223, 383 (1990). (b) J. P. Attfield, J. Phys. Chem. Solids 52, 1243 (1991).CrossRefGoogle Scholar
7. Wilkinson, A. P., Cox, D. E. and Cheetham, A. K., J. Phys. Chem. Solids 52, 1257 (1991).CrossRefGoogle Scholar
8. (a) Ponomarev, Y. V. and Turutin, Y. A., Soy. Phys. Tech. Phys. 28, 1474 (1983); 29, 232 (1984).Google Scholar
9. Pickering, I. J., Sansone, M., Marsch, J. and George, G. N., Japan J. Appl. Phys. (in the press 1993).Google Scholar
10. Stragier, H., Cross, J. O., Rehr, J. J., Sorensen, L. B., Bouldin, C. E. and Woicik, J. C., Phys. Rev. Lett. 69, 3064 (1992).CrossRefGoogle Scholar
11. Pickering, I. J., Sansone, M., Marsch, J. and George, G. N., J. Amer. Chem. Soc. (in the press 1993)Google Scholar
12. (a) Cromer, D. T. and Liberman, D., Acta Cryst. A37, 267 (1981).(b) D. Cromer, J. Appl. Cryst. 16, 437 (1983). (Note: The program of Cromer was modified as recommended by D. C. Creagh, to correct errors in the original)CrossRefGoogle Scholar
13. Knop, O. and Reid, K. I. G., Can. J. Chem. 46, 3463 (1968).CrossRefGoogle Scholar
14. Lenglet, M., D'Huysser, A. and Dürr, J., Ann. Chim. Fr. 13, 505 (1988).Google Scholar
15. Sano, M., Inorg. Chem. 27, 4249 (1988).CrossRefGoogle Scholar
16. Briois, V., Cartier, C., Momenteau, M., Maillard, Ph., Zarembowitch, J., Dartyge, E., Fontaine, A., Tourillon, G., Thuéry, P. and Verdaguer, M., J. de Chimie Phys. 86, 1623 (1989).CrossRefGoogle Scholar