Published online by Cambridge University Press: 17 March 2011
Diffuse reflectance spectroscopy measurements at ambient temperatures have been made over the near infrared-visible range (5000-25000 cm−1) on polycrystalline ceramic zirconolite (CaZrTi2O7) and perovskite (CaTiO3) samples doped with Pu4+. The Pu concentrations were varied between 0.001 and 0.1 formula units. The Pu ions gave rise to a number of unresolved intraconfigurational f-f electronic absorption bands of a few hundred cm−1 bandwidth. Pu ions were targeted to substitute in the Ca sites as either trivalent or tetravalent species and as tetravalent species in the Zr site of zirconolite by the appropriate choice of charge compensation and firing atmosphere. There was approximate agreement of the Kubelka-Munk absorption intensities with Beer's Law for the different Pu4+ substitution schemes, apart from some “new” bands, attributed to impurities, observed in the most dilute zirconolite sample. No clear spectral differences were evident when Pu4+ was targeted to Ca or Zr sites in zirconolite. Samples prepared in reducing atmospheres with a view to producing Pu3+ were strongly absorbing, leading to suppression of Pu transitions.