Hostname: page-component-5f745c7db-8qdnt Total loading time: 0 Render date: 2025-01-06T08:48:27.352Z Has data issue: true hasContentIssue false

Diffusion barriers for CeFe4Sb12/Cu thermoelectric devices

Published online by Cambridge University Press:  22 February 2013

Laetitia Boulat
Affiliation:
Université Montpellier 2, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, Place E. Bataillon, 34095 Montpellier Cedex 5, France
Romain Viennois
Affiliation:
Université Montpellier 2, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, Place E. Bataillon, 34095 Montpellier Cedex 5, France
Didier Ravot
Affiliation:
Université Montpellier 2, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, Place E. Bataillon, 34095 Montpellier Cedex 5, France
Nicole Fréty
Affiliation:
Université Montpellier 2, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, Place E. Bataillon, 34095 Montpellier Cedex 5, France
Get access

Abstract

The efficiency of a tantalum nitride interlayer as a diffusion barrier for CeFe4Sb12 thermoelectric material against electrode copper material has been investigated. The thermal stability of CeFe4Sb12/TaN/Cu stackings has been investigated after annealing at 600°C from a microstructural study. CeFe4Sb12 and Cu appear to chemically react through the formation of CeCu2 and Cu2Sb phases whereas no reaction is observed for CeFe4Sb12 with TaN. This study showed that the TaN interlayer cannot inhibit the diffusion of Sb from the skutterudite substrate to the copper electrode but prevents the diffusion of Ce and consequently the formation of the CeCu2 phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rowe, D.M., Renew. Energy 16 (1999) 1251–55.CrossRefGoogle Scholar
Disalvo, F.J., Science 285 (1999) 703–06.CrossRefGoogle Scholar
Qiu, P. F., Yang, J., Liu, R. H., Journal of Applied Physics 109 (2011) 063713-1–;063713–8.Google Scholar
Wojciechowski, K.T., Zybala, R., Mania, R., Microelectronics Reliability 51 (2011) 1198.CrossRefGoogle Scholar
Zhao, D., Geng, H., Chen, L., Int. J. Appl. Ceram. Technol. (2011) 19.Google Scholar
Kim, D.K., Lee, H., Kim, D., Journal of Crystal Growth 283 (3-4) (2005) 404–8.CrossRefGoogle Scholar
Liu, L., Wang, Y., Gong, H., Journal of Applied Physics 90(1) (2001) 416–20.CrossRefGoogle Scholar
Stavrev, M., Fischer, D., Wenzel, C., Thin Solid Film 307 (1997) 7988.CrossRefGoogle Scholar
Nazon, J., Fraisse, B., Sarradin, J., Applied Surface Science 254 (2008) 5670–74.CrossRefGoogle Scholar
Chapon, L., Ravot, D., Tedenac, J. C., J. Alloys Compd. 282 (1999) 58.CrossRefGoogle Scholar
Viennois, R., Girard, L., Ravot, D. et al. , Physical Review B 80 (2009).Google Scholar
Nazon, J., Sarradin, J., Flaud, V., Tedenac, J.C., Fréty, N., J. Alloys Compd. 464 (2008) 526531.CrossRefGoogle Scholar
Movchan, B.A., Demchishin, A.V., Phys. Met. Metallogr. 28 (1969) 8385.Google Scholar
Thornton, J.A., Ann. Rev. Mater. Sci. 7 (1977) 239–60.CrossRefGoogle Scholar
Tsukimoto, S., Moriyama, M., Murakami, M., Thin Solid Films 460 (1/2) (2004) 222–26.CrossRefGoogle Scholar
Nolas, G.S., Morelli, D.T., Tritt, T.M., Annual Review of Materials Science 29 (1999) 89.CrossRefGoogle Scholar
Liu, W., Jie, Q., Li, Q., Physica B 406 (2011) 5255.CrossRefGoogle Scholar
Shin, C.S., Gall, D., Kim, Y.W., Journal of applied Physics 90(6) (2001) 2879–85.CrossRefGoogle Scholar
Laurila, T., Zeng, K., Kivilahti, J.K., Microelectronic Engineering 60 (2002) 7180.CrossRefGoogle Scholar
Saber, H.H., El-Genk, M.S., Energy Conversion and Management 48 (2007) 13831400.CrossRefGoogle Scholar