Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T13:56:22.801Z Has data issue: false hasContentIssue false

Diffusion Engineering by Carbon in Silicon

Published online by Cambridge University Press:  17 March 2011

Ulrich Goesele
Affiliation:
Max Plack Institute of Microstructure Physics Weinberg 2, D-06120 Halle, Germany
Pierre Laveant
Affiliation:
Max Plack Institute of Microstructure Physics Weinberg 2, D-06120 Halle, Germany
Rene Scholz
Affiliation:
Max Plack Institute of Microstructure Physics Weinberg 2, D-06120 Halle, Germany
Norbert Engler
Affiliation:
Max Plack Institute of Microstructure Physics Weinberg 2, D-06120 Halle, Germany
Peter Werner
Affiliation:
Max Plack Institute of Microstructure Physics Weinberg 2, D-06120 Halle, Germany
Get access

Abstract

The possibility to suppress undesirable diffusion of the base dopant boron in siliconbased bipolar transistor structures by the incorporation of a high concentration of carbon has lead to renewed interest in the behavior of carbon in crystalline silicon. The present paper will review essential features of carbon in silicon including solubility, diffusion mechanisms and precipitation behavior. Based on this information the possibilities to use carbon to influence diffusion of dopants in silicon by the introduction of non-equilibrium concentrations of intrinsic point defects will be discussed as well as the reason for the relatively high resilience against carbon precipitation. Interactions between carbon and oxygen will be mentioned, especially in the context of an as yet unexplained fast out-diffusion of carbon close to the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Newman, R. C. and Wakefield, J., J. Phys. Solids 19, 230 (1961).10.1016/0022-3697(61)90032-4Google Scholar
2. Kolbesen, B. O., Solid-State Electronics 25, 759 (1982).10.1016/0038-1101(82)90206-4Google Scholar
3. Gösele, U., Mat. Res. Soc. Symp. Proc. 59, 419 (1986).10.1557/PROC-59-419Google Scholar
4. Wong, H., et al. Appl. Phys. Lett. 52, 1023 (1988).10.1063/1.99233Google Scholar
5. Skorupa, W., Yankov, R.A., Mat. Chem. Phys. 44, 101 (1996).10.1016/0254-0584(95)01673-IGoogle Scholar
6. Lehmann, V., Mitani, K., Feijoo, D., and Gösele, U., J. Electrochem. Soc. 138, L3 (1991).10.1149/1.2085826Google Scholar
7. Faschinger, W., Zerlauth, S., Stangl, J., and Bauer, G., Appl. Phys. Lett. 67, 2630 (1995).10.1063/1.114318Google Scholar
8. Jain, S. C., Osten, H. J., Dietrich, B., and Rücker, H., Semicond. Sci. Technol. 10, 1289 (1995).10.1088/0268-1242/10/10/001Google Scholar
9. Schmidt, O. G., Lange, C., Eberl, K., Kienzle, O., and Ernst, F., Appl. Phys. Lett. 71, 2340 (1997).10.1063/1.120072Google Scholar
10. Stolk, P. A., Gossmann, H.-J., Eaglesham, D. J., Jacobson, D. C., Poate, J. M., and Luftmann, H. S., Appl. Phys. Lett. 66, 568 (1995).10.1063/1.114015Google Scholar
11. Stolk, P. A., Gossmann, H.-J., Eaglesham, D. J., Jacobson, D. C., Rafferty, C. S., Gilmer, G. H., Jaraiz, M., Poate, J. M., Luftman, H. S., and Haynes, T. E., J. Appl. Phys. 81, 6031 (1997); and references there in.10.1063/1.364452Google Scholar
12. Cowern, N. E. B., Cacciato, A., Custer, J. S., Saris, F. W., and Vanderhorst, W., Appl. Phys. Lett. 68, 1150 (1996).10.1063/1.115706Google Scholar
13. Lanzerotti, L. D., Sturm, J. C., Stach, E., Hull, R., Buyuklimanli, T., and Magee, C., Proc. Intern. Device Meeting, Piscataway 1996, p. 249.Google Scholar
14. Carroll, M.S., Chang, C.-L., and Sturm, J.C., Appl. Phys. Lett 73, 3695 (1998).10.1063/1.122866Google Scholar
14. Rücker, H., Heinemann, B., Bolze, D., Knoll, D., Krüger, D., Kurps, R., Osten, H. J., Schley, P., Tillack, B., and Zaumseil, P., Proc. IEDM, Washington, Dec.1999, p.345.Google Scholar
16. Osten, H. J., Carbon-Containing Layers on Silicon, Transtech Publ., Zurich (1999).Google Scholar
17. Scholz, R., Gösele, U., Huh, J.-Y., and Tan, T.Y., Appl. Phys. Lett. 72, 200 (1998).10.1063/1.120684Google Scholar
18. Scholz, R.F., Werner, P. Gösele, U. and Tan, T.Y., Appl. Phys. Lett. 74, 392 (1999).10.1063/1.123081Google Scholar
19. Bean, A.R., Newman, R.C., J. Phys. Chem. Solids 32, 1211 (1971).10.1016/S0022-3697(71)80179-8Google Scholar
20. Baker, J. A., Tucker, T. N., Moyer, N. E., and Busher, R. C., J. Appl. Phys. 39, 4365 (1968).10.1063/1.1656977Google Scholar
21. Windish, D. and Becker, P., Phil. Mag. B 58, 435 (1988).10.1080/01418618808209936Google Scholar
22. Wattkins, G.D. and Brower, K.L., Phys. Rev. Lett. 36, 1329 (1976).10.1103/PhysRevLett.36.1329Google Scholar
23. Tipping, A. K. and Newman, R. C., Semicond. Sci. Technol. 2, 315 (1987).10.1088/0268-1242/2/5/013Google Scholar
24. Davis, G. and Newman, R. C., in Handbook of Semiconductors, vol. 3, 2nd edition, ed. Mahajan, S., p. 1557, North-Holland, Amsterdam 1994.Google Scholar
25. Rollert, F., Stolwijk, N. A., and Mehrer, H., Materials Science Forum 38–41, 753 (1989).Google Scholar
26. Frank, W., Gösele, U., Mehrer, H., and Seeger, A., in: Diffusion in Crystalline Solids, Murch, G. E. and Nowick, A., eds. New York, Academic Press, p. 31 (1984).Google Scholar
27. Gösele, U., Frank, W., and Seeger, A., Appl. Phys. 23, 361 (1980).10.1007/BF00903217Google Scholar
28. Bracht, H., Stolwijk, N. A., and Mehrer, H., Phys. Rev. B 52, 16542 (1995).10.1103/PhysRevB.52.16542Google Scholar
29. Frank, F. C. and Turnbull, D., Phys. Rev. 104, 617 (1959).10.1103/PhysRev.104.617Google Scholar
30. Tan, T. Y. and Gösele, U., Appl. Phys. A 37, 1 (1985).10.1007/BF00617863Google Scholar
31. Kalejs, J. P., Ladd, L. A., and Gösele, U., Appl. Phys. Lett. 45, 268 (1984).10.1063/1.95167Google Scholar
32. Bracht, H., Haller, E.E., and Clark-Phelps, R., Phys. Rev. Lett. 81, 393 (1998).10.1103/PhysRevLett.81.393Google Scholar
33. Strane, J. W., Stein, H. J., Lee, S. R., Picroux, S. T., Watanabe, J. K., and Mayer, J. W., J. Appl. Phys. 76, 3656 (1994).10.1063/1.357429Google Scholar
34. Warren, P., Mi, J., Overney, F., and Dutoit, M., J. Cryst. Growth 157, 414 (1995).10.1016/0022-0248(95)00334-7Google Scholar
34. Scholz, R. F., Werner, P., Laveant, P., Engler, N., Gösele, U., and Gossmann, H.-J., submitted to J. Appl. Phys.; see also Ph. D. Thesis, R.F. Scholz, Halle 1999.Google Scholar
36. Taylor, W. J., Tan, T. Y., and Gösele, U., Appl Phys. Lett. 62, 336 (1993).Google Scholar
37. Mittemeijer, E. J., personal communication.Google Scholar
38. Hahn, S., Arst, M., Ritz, K. N., Shatas, S., Stein, H. J., Rek, Z. U., and Tiller, W. A., J. Appl. Phys. 64, 849 (1988).10.1063/1.341936Google Scholar
39. Sun, Q., Yao, K. H., Lagowski, J., and Gatos, H. C., J. Appl. Phys. 67, 4313 (1990).10.1063/1.344947Google Scholar
40. Shimura, F., Higuchi, T., and Hockett, R. S., Appl. Phys. Lett. 46, 941 (1985).10.1063/1.95828Google Scholar
41. Gösele, U. and Tan, T. Y., Appl. Phys. 28, 79 (1982).10.1007/BF00617135Google Scholar
42. Yu, S., Tan, T. Y., and Gösele, U., J. Appl. Phys. 69, 3547 (1991).10.1063/1.348497Google Scholar
43. Rücker, H., Heinemann, B., Röpke, W., Kurps, R., Krüger, D., Lippert, G., and Osten, H.J., Appl. Phys. Lett. 73, 1682 (1998).10.1063/1.122244Google Scholar
44. Werner, P., Gossmann, H., Jacobson, D.C., and Gösele, U., Appl. Phys. Lett. 73, 2465 (1998).10.1063/1.122483Google Scholar
45. Zaumseil, P. and Rücker, H., Solid-State Phenomena 69–70, 203 (1999).10.4028/www.scientific.net/SSP.69-70.203Google Scholar