Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T09:54:04.343Z Has data issue: false hasContentIssue false

Diffusion in Metals, Quasicrystals, and Intermetallic Compounds

Published online by Cambridge University Press:  10 February 2011

H. Mehrer
Affiliation:
Institut für Metallforschung, Universität MünsterWilhelm–Klemm–Strasse 10, D-48149 Münster, Germany
Th. Zumkley
Affiliation:
Institut für Metallforschung, Universität MünsterWilhelm–Klemm–Strasse 10, D-48149 Münster, Germany
M. Eggersmann
Affiliation:
Institut für Metallforschung, Universität MünsterWilhelm–Klemm–Strasse 10, D-48149 Münster, Germany
R. Galler
Affiliation:
Institut für Metallforschung, Universität MünsterWilhelm–Klemm–Strasse 10, D-48149 Münster, Germany
M. Salamon
Affiliation:
Institut für Metallforschung, Universität MünsterWilhelm–Klemm–Strasse 10, D-48149 Münster, Germany
Get access

Abstract

In this paper recent developments of diffusion in three related areas will be reviewed: The first part is devoted to self- and solute diffusion in metals with particular emphasis on Al. Contrary to most other metallic solvents, diffusion of transition elements in Al is anomalous in several respects: diffusion is very slow, activation enthalpies, pre-exponential factors and activation volumes are unusually high. By contrast, non-transition elements in Al show more or less normal solute diffusion behaviour. The anomalous behaviour is attributed to a strong repulsive interaction between transition metal solutes and vacancies. Ab-initio calculations could help to understand this well-documented diffusion problem in detail.

In the second part very recent diffusion studies on single crystals of the Al-base quasicrystalline intermetallic compound Al-Pd-Mn will be discussed. Diffusion of Zn, Ge, Mn, Fe, Co, Pd and Au has been studied by various groups. At least in the high-temperature regime diffusion in the quasicrystal – despite some differences in detail – shows striking similarities to diffusion in Al, for which a vacancy-type mechanism is generally accepted. The activation volumes of +0.67 and +0.74 atomic volumes measured for Mn- and Zn-diffusion in Al-Pd-Mn strongly favour a vacancy mechanism as well. For the low temperature regime of Pd and Au diffusion the possibility of a phason-related mechanism is discussed.

The third part deals with recent investigations of iron-aluminides and iron-silicides for which Fe self-diffusion and diffusion of selected foreign elements (Ge in Fe–Si, In and Zn in Fe–Al) has been investigated. There is no doubt that vacancies mediate the diffusion process. Within this general mechanism a number of factors like the crystal structure, the state of order, the composition, and the type of bonding have strong influence on diffusion. Such factors are discussed also in connection with results from positron annihilation and M6ssbauer spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Philibert, J., Atom Movements–Diffusion and Mass Transport in Solids, Les Editions de Physique, 1991.Google Scholar
[2] Mehrer, H. (Vol. Ed.), Diffusion in Solid Metals and Alloys, Vol. III/26 of Landolt-Börnstein, New Series, Springer Verlag, 1997.Google Scholar
[3] Heumann, Th., Diffusion in Metallen, Springer Verlag, Berlin, 1992.Google Scholar
[4] Mehrer, H., Herzig, Chr., Stolwijk, N. A. and Bracht, H. (Eds.), Diffusion in Materials (DIMAT-96), Proc. of the Int. Conf. on ‘Diffusion in Materials (DIMAT-96)’, Nordkirchen, Germany, August 5–9, 1996, Scitec Publications Ltd, Switzerland 1997 and Defect and Diffusion Forum 143–147, 1997.Google Scholar
[5] Seeger, A. and Mehrer, H. in Vacancies and Interstitials in Metals, edited by Seeger, A., Schumacher, D., Diehl, J. and Schilling, W., North-Holland, Amsterdam, 1970, p. 1 Google Scholar
[6] Peterson, N. L., J. Nucl. Mat. 69 & 70, p. 337 (1978).Google Scholar
[7] Mehrer, H., J. Nucl. Mat. 69 & 70, p. 3860 (1978).Google Scholar
[8] Mehrer, H., Defect and Diffusion Forum 129–130, p. 5774 (1996).Google Scholar
[9] Claire, A. D. Le, Phil. Mag. 7, p. 141167 (1962).Google Scholar
[10] Claire, A. D. Le, J. of Nuclear Materials 69 & 70, p. 7096 (1978).Google Scholar
[11] Neumann, G. and Hirschwald, W., Phys. Stat. Sol. (b) 55, p. 99111 (1973).Google Scholar
[12] Neumann, G., Tdlle, V., Almazouzi, A., Macht, M.-P. and Naundorf, V., Defect and Diffusion Forum 143–147, p. 137142 (1997); see also [4].Google Scholar
[13] Becker, Ch., Erdélyi, G., Hood, G. and Mehrer, H., Defect and Diffusion Forum 66–69, p. 409414 (1989).Google Scholar
[14] Erdélyi, G., Freitag, K. and Mehrer, H., Phil. Mag. A 63, p. 11671174 (1990).Google Scholar
[15] Erdélyi, G., Freitag, K., Rummel, G. and Mehrer, H., Appl. Phys. A 53, p. 297302 (1991).Google Scholar
[16] Rummel, G., Zumkley, Th., Eggersmann, M., Freitag, K. and Mehrer, H., Z. Metallkde. 86, p. 121130 (1995).Google Scholar
[17] Rummel, G., Zumkley, Th., Eggersmann, M., Freitag, K. and Mehrer, H., Z. Metallkde. 86, p. 131140 (1995).Google Scholar
[18] Thürer, A., Rummel, G., Zumkley, Th., Freitag, K. and Mehrer, H., Phys. Stat. Sol. (a) 149, p. 535547 (1995).Google Scholar
[19] Hood, G.M., Phil. Mag. 21, p. 305327 (1970).Google Scholar
[20] Erdélyi, G., Mehrer, H., Beke, D. L. and Gddeny, I., Defect and Diffusion Forum 143–147, p. 121124 (1997); see also [4].Google Scholar
[21] Bergner, D., Neue Hiitte 29, p. 207210 (1984).Google Scholar
[22] Hood, G. M., Defect and Diffusion Forum 95–98, 755774 (1993).Google Scholar
[23] Beke, D. L., Erdélyi, G. and Kedves, F. J., Acta Universitatis Debreceniensis de Ludovico Kossuth Nominatae Series Physica et Chimica, p. 723 (1976).Google Scholar
[24] Fähnle, M., Meyer, B., Mayer, J., Oehrens, J. S., Bester, G., this volumeGoogle Scholar
[25] Janot, C., Quasicrystals: A Primer, Clarendon Press, Oxford 1994.Google Scholar
[26] Hippert, F. and Gratias, D., Lectures on Quasicrystals, Les ditions de Physique, Les Ulis 1994.Google Scholar
[27] Archembault, P. and Janot, C., MRS Bulletin, p. 4853, (1997).Google Scholar
[28] Urban, K., Feuerbacher, M. and Wollgarten, M., MRS Bulletin, p. 6568 (1997).Google Scholar
[29] Shechtman, D., Blech, I., Gratias, D. and Cahn, J. W., Phys. Rev. Lett. 53, p. 19511953 (1984).Google Scholar
[30] Kalugin, P. A. and Katz, A., Europhys. Lett. 21, p. 921926 (1993).Google Scholar
[31] Joseph, D., Baake, M., Kramer, P. and Trebin, H.-R., Europhys. Lett. 27, p. 451456 (1994).Google Scholar
[32] Roth, J. and Giihler, F., Defect and Diffusion Forum, 143–147, p. 815820 (1997); see also [4].Google Scholar
[33] Divinski, S. V. and Larikov, L. N., Defect and Diffusion Forum 143–147, p. 861866 (1997).Google Scholar
[34] Zener, C., Acta. Cryst. 3, p. 346 (1950).Google Scholar
[35] Tuijn, C., Defect and Diffusion Forum 143–147, p. 1118 (1997); see also [4].Google Scholar
[36] Seeger, A., in Ultra-High-Purity Metals, edited by Abiko, K., Hirokawa, K. and Takaki, S., The Japan Institute of Metals, Sendai, 1995, p. 27.Google Scholar
[37] Seeger, A., Defect and Diffusion Forum 143–147, p. 2136 (1997); see also [4].Google Scholar
[38] Ittermann, B., Ackermann, H., Stöckmann, H.-J., Ergezinger, K.-H., Heemeier, M., Kroll, F., Mai, F., Marbach, K., Peters, D. and Sulzer, G., Phys. Rev. Letters 77, p. 47844787 (1996).Google Scholar
[39] Tsai, A.-P., Inoue, A. and Masumoto, T., Mat. Trans. JIM 30, p. 666676 (1989).Google Scholar
[40] Jeffries, Z., Trans. AIME 70, p. 303 (1924).Google Scholar
[41] Zumkley, T., Mehrer, H., Freitag, K., Wollgarten, M., Tamura, N. and Urban, K. Phys. Rev. B, Rapid Communication 54, p. R6815– R6818 (1996).Google Scholar
[42] Zumkley, T., Wollgarten, M., Feuerbacher, M., Freitag, K. and Mehrer, H., Defect and Diffusion Forum, 143–147, p. 843848 (1997); see also [4].Google Scholar
[43] Sprengel, W., Lograsso, T. A. and Nakajima, H., Phys. Rev. Letters 77, p. 52335236 (1996).Google Scholar
[44] Nakajima, H., Asai, J., Nonaka, K., Shinbo, I., Tsai, A.-P. and Masumoto, T., Phil. Mag. Lett. 68, p. 315320 (1993).Google Scholar
[45] Sprengel, W., Lograsso, T. A. and Nakajima, H., Defect and Diffusion Forum, 143–147, p. 849– 654 (1997); see also [4].Google Scholar
[46] Sprengel, W., Lograsso, T. A. and Nakajima, H., Proc. of the 6th Int. Conf. on Quasicrystals, Tokyo, May 1997, edited by Takeuchi, S. and Fujiwara, T., World Scientific, Singapore 1998, in print.Google Scholar
[47] Nakajima, H., Sprengel, W. and Nonaka, K., Defect and Diffusion Forum, 143–147, p. 803814 (1997); see also [4].Google Scholar
[48] Blüher, R., Scharwhchter, P., Frank, W. and Kronmüller, H., Phys. Rev. Letters 80, p. 10141017 (1998).Google Scholar
[49] Galler, R., Zumkley, Th., Grushko, B. and Mehrer, H., presented at German-French meeting on quasicrystals, Strasbourg, April 1–3, 1998.Google Scholar
[50] Westbrook, J. H. and Fleischer, R. L., Intermetallic Compounds, Vol.1,2, New York, Wiley, 1994.Google Scholar
[51] Sauthoff, G., Intermetallics, VCH Verlagsgesellschaft, Weinheim, (1995).Google Scholar
[52] Mehrer, H., Materials Transactions, JIM, 37, p. 12591280 (1996).Google Scholar
[53] Nakajima, H., Sprengel, W. and Nonaka, K., Intermetallics 4, p. 17 (1996).Google Scholar
[54] Koiwa, M., Numakura, H. and Ishioka, I., Defect and Diffusion Forum, 143–147, p. 209222 (1997); see also [4].Google Scholar
[55] Mehrer, H., Eggersmann, M., Gude, A., Salamon, M. and Sepiol, B., Materials Science and Engineering A 239–240, p. 889898 (1997).Google Scholar
[56] Mehrer, H., in THERMEC'97 ‘sInternational Conference on Thermomechanical Processing of Steels and other Materials, Wollongong NSW, Australia, 1997, edited by Chandra, T. and Sakai, T., The Minerals, Metals and Materials Society, Warrendale, USA, 1997, p. 14051414.Google Scholar
[57] Massalski, T. B., Binary Alloy Phase Diagrams, American Society for Metals, Metals Park, Ohio, 1986.Google Scholar
[58] Eggersmann, M., Sepiol, B., Vogl, G. and Mehrer, H., Defect and Diffusion Forum 143–147, p. 339344 (1997); see also [4].Google Scholar
[59] Tökei, Zs., Bernardini, J., Gas, P. and Beke, D. L., Acta Mater. 45, p. 541– 446 (1997), and Zs. Tdkei, J. Bernardini, G. Erdelyi, P. Gas and D. L. Beke, Defect and Diffusion Forum 143–147, p. 359–364 (1997); see also [4].Google Scholar
[60] Kuper, A. B., Lazarus, D., Manning, J. R. and Tomizuka, C.T., Phys. Rev. 104, p. 15361541 (1956).Google Scholar
[61] Fishman, S. G., Gupta, D. and Lieberman, D. S., Phys. Rev. B2, p.14511460 (1970).Google Scholar
[62] Bakker, H., in Diffusion in Crystalline Solids, edited by Murch, G. E. and Nowick, A. S., Academic Press, 1984, p. 189256.Google Scholar
[63] Larikov, L. N., Geichenko, V. V. and Falchenko, V. M., Diffusion processes in ordered Alloys Naukova Dumka Publ., Kiev 1975; Nat. Bur. Stand., New Dehli: Amerind. Publ. Co., 1981.Google Scholar
[64] Weinhagen, M., Köhler, B., Wolff, J. and Hehenkamp, Th., Defect and Diffusion Forum 143–147, p. 449457 (1997); see also [4].Google Scholar
[65] Elcock, E. W. and McCombie, C. W., Phys. Rev. 109, p. 605606 (1958).Google Scholar
[66] Stolwijk, N. A., Gend, M. van and Bakker, H., Phil. Mag. A42, p.783808 (1980).Google Scholar
[67] Kao, C. R., Kim, S. and Chang, Y. A., Materials Science and Engineering A 192/193, p. 965979 (1995).Google Scholar
[68] Arita, M., Koiwa, M. and Ishioka, S., Acta Metall. 37, p. 13631379 (1989).Google Scholar
[69] Murch, G. E. and Belova, I. V., this volumeGoogle Scholar
[70] Belova, I. V. and Murch, G. E., Intermetallics, in pressGoogle Scholar
[71] Mayer, J., Elsässer, C. and Fahnle, M.. phys. stat. sol. (b) 191, p. 283298 (1995).Google Scholar
[72] Mayer, J. and Fdhnle, M., Defect and Diffusion Forum 143–147, p. 285290 (1997); see also [4].Google Scholar
[73] Vogl, G. and Sepiol, B., Acta Metal. Mater. 42, p. 31753181 (1994).Google Scholar
[74] Feldwisch, R., Sepiol, B. and Vogl, G., Acta Metal. Mater. 43, p. 20332039 (1995).Google Scholar
[75] Schaefer, H.-E. and Badura-Gergen, K., Defect and Diffusion Forum 143–147, p. 193208 (1997); see also [4].Google Scholar
[76] Kerl, R., Wolff, J. and Hehenkamp, Th., Verhandl. DPG 5, p. 833 (1997).Google Scholar
[77] Wolff, J., Franz, M., Broska, A. and Hehenkamp, Th., Defect and Diffusion Forum 143–147, p. 239244 (1997); see also [4].Google Scholar
[78] Damson, B., PhD thesis, University of Stuttgart, 1998.Google Scholar
[79] Gude, A., Mehrer, H., Phil. Mag. A 76, p. 129 (1997).Google Scholar
[80] Gude, A., Sepiol, B., Vogl, G. and Mehrer, H., Defect and Diffusion Forum 143–147, p. 351358 (1997); see also [4].Google Scholar
[81] Kiimmerle, E. A., Badura, C., Sepiol, B., Mehrer, H. and Schaefer, H.-E., Phys. Rev. B 52, p. R6947– R6950 (1995).Google Scholar
[82] Sepiol, B. and Vogl, G., Phys. Rev. Letters 71, p. 731734 (1993).Google Scholar
[83] Gude, A., Freitag, K., Sepiol, B., Vogl, G. and Mehrer, H., phys. stat. sol. (b) 197, p. 299307 (1996).Google Scholar
[84] Sepiol, B., private communication.Google Scholar
[85] Barge, T., Gas, P. and d'Heurle, F.M., J. Mater. Res. 10, p. 1134 (1995).Google Scholar
[86] Werner, M., Mehrer, H. and Hochheimer, H. D., Phys. Rev. B 32, p. 39303937 (1985).Google Scholar
[87] Frank, W., Gösele, U., Mehrer, H. and Seeger, A., in Diffusion in Crystalline Solids, edited by Murch, G. E. and Nowick, A. S., Academic Press, 1984, p. 63142.Google Scholar