Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T14:24:15.205Z Has data issue: false hasContentIssue false

Diffusion of Impurities Under Bias in CVD Diamond Films

Published online by Cambridge University Press:  21 February 2011

G. Popovici
Affiliation:
Nuclear Engineering Department, University of Missouri, Columbia, MO 65211
T. Sung
Affiliation:
Nuclear Engineering Department, University of Missouri, Columbia, MO 65211
M. A. Prelas
Affiliation:
Nuclear Engineering Department, University of Missouri, Columbia, MO 65211
S. Khasawinah
Affiliation:
Nuclear Engineering Department, University of Missouri, Columbia, MO 65211
R. G. Wilson
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
Get access

Abstract

The diffusion of oxygen, lithium, chlorine, and fluorine in CVD diamond films was performed under bias at 700 and 1000 °C. SIMS and Auger analyses were used to determine the impurity concentration. After diffusion, the concentrations of Li and O in the diamond films were found to be of the order of (3–4)×1019 cm-3. The fluorine concentration was of order of (l-2)×1017 cm-3. The conductivity was p-type. The change in the resistivity due to diffusion was nearly nine orders of magnitude for the sample diffused under electric field, and six orders of magnitude for the samples diffused without field. No dependence of the impurity concentration on the applied bias was observed except for fluorine. The fluorine concentration dependence on the electric field indicates that fluorine may have formed a shallow level in the diamond band gap. The fact that large concentrations of impurities can be diffused into diamond films at relatively low temperatures indicates the presence in the films of many lattice defects (including grain boundaries).

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Popovici, G. and Prelas, M. A., Diamond-Film Semiconductors, Proc. SPIE Conference, OE/LASE'94, January 1994, Los Angeles, to be publ.Google Scholar
2. van Enkevort, W. J. P. and Versteegen, E. H., J. Phys. : Condens. Matter v. 4, p. 2361, 1992 Google Scholar
3. Farrer, R. G., Solid State Comm. v. 7, p. 685, 1969 Google Scholar
4. Spitsyn, B. V. and Alexenko, A. E., Diamond materials, Proc. of the Secondini. Symposion of Electochem. Soc., 1991 ed. by Purdes, A. J., Angus, J. C., Davis, R. F., Meyerson, B. M., Spear, K. E., and Yoder, M., p. 597 Google Scholar
5. Setaka, N., Technology Update on Diamond, Extended Abstracts (EA-19), ed. Chang, P. P. H., Nelson, D. and Hiraki, A., 1989 Materials Research Society,Google Scholar
6. Kamo, M., Yarimoto, H., Ando, T., and Sato, Y., New Diamond Science and Technology, 1991 MRS Int. Conf. Proc, editors Messier, R., Glass, J. T., Butler, J. E., Roy, R., p. 637641 Google Scholar
7. Vavilov, V.S.: Phys. Stat. Solidi (a)31, 11 (1975)Google Scholar
8. . Landstrass, M. I., Piano, M. A., Moyer, D., Smith, S. P., and Wilson, R. G., Diamond Materials, Electrochem. Soc., ed. Purdes, A. J., Angus, J. C, Davis, R. F., Meyerson, B. M., Spear, K. E., and Yoder, M., 1991, p. 574579 Google Scholar
9. Fountain, G. G., Rudder, R. A., Malta, D. P., Hattangady, S. V., Alley, R. G., Hudson, G. C., Posthill, J. B., Markunas, R. J., Humphreys, T. P., Nemanich, R. J., Venkatesan, V. and Das, K., Diamond Materials, Proc Second Symp. Electochem. Soc. ed. Purdes, A. J., Angus, J. C., Davis, R. F., Meyerson, B. M., Spear, K. E., and Yoder, M., 1991, p. 523 Google Scholar
10. Okumura, K., Mort, J., and Machonkin, M., Appl. Phys. Lett, v. 57, p. 1907, 1990 Google Scholar
11. Cytermann, C., Brener, R., and Kalish, R., to be published in Diamond and Related Materials.Google Scholar
12. Wilson, R. G., Surface and Coatings Technol. 47, 559 (1991)Google Scholar
13. Bernholc, J., Kajihara, S. A., and Antonelli, A., New Diamond Science and Technology, 1991 MRS Int. Conf. Proc, editors Messier, R., Glass, J. T., Butler, J. E., Roy, R., p. 923 Google Scholar
14. Sharma, B. L., Diffusion in semiconductors, Trans Tech Publishers, Germany, 1970, p. 2562 Google Scholar
15. Khasawinah, S., Sung, T., Spitsyn, B., Miller, W. H., Popovici, G., Prelas, M. A., Charlson, E. J., Charlson, E. M., Meese, J. M., Stacy, T., Mannig, G., Loyalka, S. K., Tompson, R. V., Chamberlain, J., and White, H., Diamond Materials, ed. Dismukes, J. P. and Ravi, K. V., Electrochemical Society Proc. v.93–17, 1993, p. 10321035 Google Scholar