Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T01:04:45.112Z Has data issue: false hasContentIssue false

Diffusion Processes in Silicides: A Comparison Between Bulk and Thin Film Phase Formation.

Published online by Cambridge University Press:  15 February 2011

Patrick Gas
Affiliation:
Laboratoire de Métallurgie, associé au CNRS, Fac. St Jérôme, case 511, 13397 Marseille, F.
Francois D'Heurle
Affiliation:
IBM Research, 10598 Yktwn Hghts, NY - 10598, USA and KTH-FTE, 16440-Kista, Sweden
Get access

Abstract

Diffusion processes in silicide thin films play a key role both during their formation by reactive diffusion or during their use. However our unique source of information was provided by indirect analysis: growth of thin films and dopant redistribution which are quite difficult to analyse in terms of diffusion mechanisms. Recent tracer experiments conducted in bulk silicides are presented. They allow a determination of both volume (v) and grain boundary (gb) diffusion coefficients. Contrary to what is observed in certain intermetallic compounds no fast volume diffusion mechanism was found. The main difference with the behaviour of pure metals is a slightly higher value of the ratio Qgb/Qv which makes gb diffusion an efficient process in a wider temperature range.

A quantitative analysis of diffusion processes during silicide formation is then possible. As an example we propose a comparison between the kinetics of growth of thin films and bulk diffusion couples in the Co/Si and Ti/Si systems. Providing that attention is paid to: i) the laws of growth which are slightly different for a phase growing simultaneously with others (bulk) and one phase growing alone (thin films), and ii) the grain size of the growing phase which is strongly dependant on temperature and thicknesses excellent agreement is obtained between the two sets of measurements. Moreover the growth rates may be calculated quite accurately from the values of the volume and gb tracer diffusion coefficients. This stresses and quantifies the role of interfacial diffusion in thin films behaviour.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nicolet, M.-A. and Lau, S.S., “Formation and characterization of transition-metal silicides”, in V.L.SI. Electronics: Microstructure Science, Academic Press, N.Y. (1983) p. 326.Google Scholar
2 Shone, C., Saraswat, K.C. and Plummer, J.D., I.E.D.M Techn. Dig.(1985) p. 407.Google Scholar
3 Maex, K., Applied Surface Science 53, 328 (1991).Google Scholar
4 d'Heurle, F.M., in these proceedings.Google Scholar
5 Gas, P. and d'Heurle, F.M., Appl. Surf. Sci. 73, 153 (1993).Google Scholar
6 Bakker, H. in Landolt-Bornstein, New Series 111/26, “Self diffusion in homogeneous binary alloys and intermediate phases”, Springer Verlag - Berlin (1990).Google Scholar
7 Bakker, H., “Tracer diffusion in concentrated alloys”, Nowick, A.S. and Murch, G.E., (Academic Press New York, (1984) p. 189.Google Scholar
8 Bakker, H. and Lo Cascio, D.M.R., Defect and Diffusion Forum 95–98, 803 (1993).Google Scholar
9 Brown, A. M. and Ashby, M.F., Acta Metall 28, 1085 (1980).Google Scholar
10 Philibert, J., Diffusion et transport dans les solides, Editions de Physique, Les Ulis (1985).Google Scholar
11 Bernardini, J. and Gas, P., Defect and Diffusion Forum 95–98, 393 (1993).Google Scholar
12 d'Heurle, F.M. and Rosenberg, R., “Electromigation in thin films”, Physics of thin films, vol 7 edited by Hass, G., Francombe, M.H. and Hoffman, R.W., Academic Press, NY (1973) p257.Google Scholar
13 d'Heurle, F.M., Gas, P., and Philibert, J., Mater. Res. Soc. Symp. Proc. 343, 181 (1994).Google Scholar
14 Huntington, H.B., Miller, N.C., and Nerves, V., Acta Metall. 9, 749 (1961).Google Scholar
15 Kikuchi, R. and Sato, H., J. Chem. Phys. 51, 161 (1969).Google Scholar
16 Kupper, A.B., Lazarus, D., Maning, J.R., and Tomizuka, C.T., Phys Rev. 104, 1536 (1956).Google Scholar
17 Tokeï, J., Bernardini, J, Gas, P., and Beke, D.L., submitted to Phil. Mag.Google Scholar
18 Hancock, G.F. and McDonnel, B.R., Phys. status Solidi A 4, 143 (1971).Google Scholar
19 Stolwijk, N., Bakker, H., and van Gend, M., J. Phys. C 13, 5207 (1980).Google Scholar
20 Jurisch, M. and Bergner, D., Diffusion and Defect Monograph Series 7, 465 (1983).Google Scholar
21 Larikov, L.N., Geichenko, V.V., and Fal'chenko, V.M., Diffusion in ordered alloys, National Bureau of Standards, Amerind Publishing Co (1981).Google Scholar
22 Kaur, I., Gust, W., and Kozma, L., Handbook of Grain and Interphase Boundary Diffusion Data, Ziegler Press, Stuttgart, 1989.Google Scholar
23 Ciccariello, J.-C., Poize, S., and Gas, P., J. Appl. Phys. 67, 3315 (1990).Google Scholar
24 Barge, T., Poize, S., Bernardini, J., and Gas, P., Appl. Surf. Sci. 53, 180 (1991).Google Scholar
25 Barge, T., Thesis - Univ. Aix Marseille III, 1993.Google Scholar
26 Gas, P., Scilla, G., Michel, A., LeGoues, F.K., Thomas, O., and d'Heurle, F.M., J. Appl. Phys. 63, 5335 (1988).Google Scholar
27 Thomas, O., Gas, P., Charaï, A., Le Goues, F.K., Michel, A., and Scilla, G., J. Appl. Phys. 64, 2973 (1988).Google Scholar
28 Gulpen, J., Thesis - Eindhoven University of Technology (1995).Google Scholar
29 Mass, J.H., Thesis, Eindhoven University of Technology (1979).Google Scholar
30 van Loo, F.J.J, Prog. Solid S. Chem. 20, 47(1990).Google Scholar
31 Wakelkamp, W., Thesis, Eindhoven University of Technology (1991).Google Scholar
32 Tu, K.N., Ottaviani, G., Gösele, U., and Föll, H., J. Appl. Phys. 54, 758 (1983).Google Scholar
33 Jan, C.H., Chen, C.-P., and Chen, Y.A., J. Appl. Phys. 73, 1168 (1993).Google Scholar
34 Barge, T., Gas, P., and d'Heurle, F.M., J. Mater. Res. 10, 1134 (1995).Google Scholar
35 Heuman, Th. and Dittrich, S., Z. Metallkd. 50, 617 (1951).Google Scholar
36 Chu, W.K., Kraütle, H., Mayer, J.W., Müller, H., Nicolet, M.-A., and Tu, K.N., Appl. Phys. Lett. 25, 454 (1974).Google Scholar
37 Finstad, T., Phys. Stat. Solidi a63, 223 (1981).Google Scholar
38 Lien, C.D., Nicolet, M.-A., and Lau, S.S., Phys. Status Solidi A81, 123 (1984).Google Scholar
39 Zheng, C.R., Zingo, E., and Mayer, J.W, Mater. Res. Soc. Symp. Proc. 25, 75 (1984).Google Scholar
40 van Gurp, G. J., van der Weg, W.J., and Sigurd, D., J. Appl. Phys. 49, 4011 (1978).Google Scholar
41 Philibert, J., Defect and Diffusion Forum 66– 69, 995 (1989).Google Scholar
42 d'Heurle, F.M. and Gas, P., J. Mater. Res. 1, 205 (1986).Google Scholar
43 Zhang, S.-L., d'Heurle, F.M., and Gas, P., Appl. Surf. Sci. 53, 103 (1991).Google Scholar
44 Chart, T. G., A critical assessment of thermodynamical data for transition metal-silicon systems, NPL Report Chem. 18 (1972).Google Scholar
45 Lien, C.D., Nicolet, M.-A., and Lau, S.S., Appl. Phys. A 34, 249 (1984).Google Scholar
46 Wen, D.S., Smith, P.L., Osburn, C.M., and Rozgonyi, G.A., Appl. Phys. Lett. 51, 1182 (1987).Google Scholar
47 Botha, A.P. and Pretorius, R., Thin Solid Films 93, 127 (1982).Google Scholar
48 Bower, R.W. and Mayer, J.W., Appl. Phys. Lett. 20, 359 (1972).Google Scholar
49 Murarka, S.P. and Fraser, D.B., J. Appl. Phys. 51, 342 (1979).Google Scholar
50 Berti, M., Drigo, A., Cohen, C., Siejka, J., Bentini, G.G., Nipoti, R., and Guerri, S., J. Appl. Phys. 55, 3558 (1984).Google Scholar
51 Hsu, J. Vac. Sci. Technol. A 5, 1402 (1987).Google Scholar
52 Lur, W. and Chen, L.J., Appl. Phys. Lett. 54, 1217 (1989).Google Scholar
53 d'Heurle, F.M., J. Vac. Sci. Technol. A 7, 1467 (1989).Google Scholar
54 Hung, L.S., Gyulai, J., Mayer, J.W., Lau, S.S., and Nicolet, M.-A., J. Appl. Phys. 54, 5076. (1983).Google Scholar
55 Lur, W. and Chen, L.J., Appl. Phys. Lett. 54, 1217 (1989).Google Scholar
56 Pico, C.A. and Lagally, M.G., J. Appl. Phys. 64, 4957 (1988).Google Scholar