Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T01:22:22.785Z Has data issue: false hasContentIssue false

Diffusion, Segregation, and Recrystallization in High-Dose Ion-Implanted Si

Published online by Cambridge University Press:  21 February 2011

S. J. Pennycook*
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6024
Get access

Abstract

Using the new technique of Z-contrast scanning transmission electron microscopy (STEM), we have been able to study the segregation of Sb at an advancing SPE growth interface and the resulting interface breakdown. The first direct information is obtained on Sb diffusion in the amorphous phase, which is many orders of magnitude enhanced over tracer crystalline values. This controls both the dopant incorporation and the stability of the resulting supersaturated alloy. These results are compared to the behavior of the low melting point substitutional diffusers and the interstitial diffusers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Blood, P., Brown, W. L., and Miller, G. L., J. Appl. Phys. 50, 173 (1979).Google Scholar
2. Regolini, J. L., Sigmon, T. W., and Gibbons, J. F., Appl. Phys. Lett. 35, 114 (1979).Google Scholar
3. Lietoila, A., Gibbons, J. F., Magee, T. J., Peng, J., and Hong, J. D., Appl. Phys. Lett. 35, 532 (1979).Google Scholar
4. Campisano, S. U., Foti, G., Baeri, P., Grimaldi, M. G., and Rimini, E., Appl. Phys. Lett. 37, 719 (1980).Google Scholar
5. Williams, J. S. and Elliman, R. G., Appl. Phys. Lett. 40, 266 (1982).Google Scholar
6. Myers, E., Ozturk, M. C., Wortman, J. J., and Hren, J. J., Appl. Phys. Lett. 53, 228 (1988).Google Scholar
7. Rozgonyi, G. A., these proceedings.Google Scholar
8. ElGhor, M., Pennycook, S. J., and Zuhr, R. A., these proceedings.Google Scholar
9. Nygren, E., Williams, J. S., Pogany, A., Elliman, R. G., Olson, G. L., and McCallum, J. C., Mat. Res. Soc. Symp. Proc. 74, 307 (1987).Google Scholar
10. Narayan, J., Holland, O. W., and Appleton, B. R., J. Vac. Sci. Technol. B 1, 871 (1983).Google Scholar
11. Pennycook, S. J., Culbertson, R. J., and Narayan, J., J. Mater. Res. 1, 476 (1986).Google Scholar
12. Pennycook, S. J., Berger, S. D., and Culbertson, R. J., J. Microscopy 144, 229 (1986).Google Scholar
13. Pennycook, S. J. and Narayan, J., Appl. Phys. Lett. 45, 385 (1984).Google Scholar
14. Pennycook, S. J. and Boatner, L. A., Nature 336, 565 (1988).Google Scholar
15. Pennycook, S. J., Jesson, D. E., and Chisholm, M. F., Proc. 6th Oxford Conference on Microscopy of Semiconducting Materials (in press).Google Scholar
16. Pennycook, S. J., Mat. Res. Soc. Symp. Proc. 52, 37 (1986).Google Scholar
17. Trumbore, F., Bell Syst. Tech. J. 39, 205 (1960).Google Scholar
18. White, C. W., Wilson, S. R., Appleton, B. R., and Young, F. W. Jr, J. Appl. Phys. 51, 738 (1980).Google Scholar
19. Fair, R. B., Impurity Doping Processes in Silicon, ed. by Wang, F. F. Y., North- Holland, New York, 1981, p. 315.Google Scholar
20. Poate, J. M., Linnros, J., Priolo, F., Jacobson, D. C., Batstone, J. L., and Thompson, M. O., Phys. Rev. Lett. 60, 1322 (1988).Google Scholar
21. Pennycook, S. J. and Culbertson, R. J., Advanced Processing of Semiconductor Devices, SPIE Proc. No. 797, ed. by Mukherjee, Sayan D., SPIE, Bellingham, Washington, 1987, p. 69.Google Scholar
22. Pennycook, S. J., Culbertson, R. J., and Berger, S. D., Mat. Res. Soc. Symp. Proc. 100,411 (1988).Google Scholar
23. Prokes, S. M. and Spaepen, F., Appl. Phys. Lett. 47, 234 (1985).Google Scholar