Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-30T23:11:13.190Z Has data issue: false hasContentIssue false

Direct Observation of Atomic Arrangement around 90° Domain Wall in Lead Titanate Thin Films.

Published online by Cambridge University Press:  08 October 2013

Takanori Kiguchi
Affiliation:
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Toyohiko J. Konno
Affiliation:
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Yoshitaka Ehara
Affiliation:
Department of Innovative and Engineered Materials, Interdisciplinary Graduated School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan
Tomoaki Yamada
Affiliation:
Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan PRESTO, Japan Science and Technology Agency, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
Hiroshi Funakubo
Affiliation:
Department of Innovative and Engineered Materials, Interdisciplinary Graduated School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan
Get access

Abstract

The growth mechanism of large-size domains in PbTiO3/SrTiO3 heteroepitaxial thin films was examined using annular bright field (ABF) – scanning transmission electron microscopy and geometric phase analysis (GPA). {101} domain walls surrounded 90° domains. The large 90° domain grows by the coalescence of the nano-size domains of less than 5 nm width. A strain map obtained from the GPA of ABF-STEM image showed that 90° domains interacted elastically and attractively with edge dislocations at PbTiO3/SrTiO3 interface through simple shear strain.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Emelyanov, A. Yu. and Pertsev, N. A., Phys. Rev. B 68, 214103 (2003).10.1103/PhysRevB.68.214103CrossRefGoogle Scholar
Ide, Takashi, Sakai, Akira, and Shimizu, Keiji, Thin Solid Films, 357, 22 (1999)10.1016/S0040-6090(99)00468-XCrossRefGoogle Scholar
Robertson, M.D., Currie, J.E., Corbett, J.M., and Webb, J.B., Ultramicroscopy, 58, 175 (1998).10.1016/0304-3991(94)00200-7CrossRefGoogle Scholar
Hÿtch, M.J., Snoeck, E., and Kilaas, R., Ultramicroscopy, 74, 131 (1998).10.1016/S0304-3991(98)00035-7CrossRefGoogle Scholar
Kiguchi, T., Aoyagi, K., Konno, T.J., Utsugi, S., Yamada, T., and Funakubo, H., Sci. Technol. Adv. Mater. 12, 034413 (2011).10.1088/1468-6996/12/3/034413CrossRefGoogle Scholar
Kiguchi, T., Aoyagi, K., Konno, T.J., Utsugi, S., Yamada, T., and Funakubo, H., Mater. Res. Soc. Symp. Proc. 1199, 1199–F09-08 (2010).Google Scholar
Nagashima, K., Aratani, M., and Funakubo, H., Jpn. J. Appl. Phys. Part 2, 39, L996 (2000).10.1143/JJAP.39.L996CrossRefGoogle Scholar
Nagashima, K. and Funakubo, H., Jpn. J. Appl. Phys. Part 1, 39, 212 (2000).10.1143/JJAP.39.212CrossRefGoogle Scholar
Findlay, S. D., Shibata, N., Sawada, H., Okunishi, E., Kondo, Y., Yamamoto, T., and Ikuhara, Y., Appl. Phys. Lett. 95, 191913 (2009).10.1063/1.3265946CrossRefGoogle Scholar
Findlay, S.D., Shibata, N., Sawada, H., Okunishi, E., Kondo, Y., Ikuhara, Y., Ultramicroscopy, 110, 903 (2010).10.1016/j.ultramic.2010.04.004CrossRefGoogle Scholar
Stemmer, S., Streiffer, S. K., Ernst, F., Rühle, M., phys. stat. sol. (a) 147, 135 (1995).10.1002/pssa.2211470115CrossRefGoogle Scholar