Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T11:02:40.205Z Has data issue: false hasContentIssue false

Direct-Write Polymer Diodes

Published online by Cambridge University Press:  11 February 2011

Mikhail I. Sluch
Affiliation:
Sciperio, Inc., 5202–2 North Richmond Hill Road, Stillwater, OK 74075, U.S.A.
Robert L. Parkhill
Affiliation:
Sciperio, Inc., 5202–2 North Richmond Hill Road, Stillwater, OK 74075, U.S.A.
Robert M. Taylor
Affiliation:
Sciperio, Inc., 5202–2 North Richmond Hill Road, Stillwater, OK 74075, U.S.A.
Kenneth H. Church
Affiliation:
Sciperio, Inc., 5202–2 North Richmond Hill Road, Stillwater, OK 74075, U.S.A.
Get access

Abstract

Conjugated polymer Schottky diodes have been directly written onto glass and alumina substrates. The rectifying contact was made between the p-type semiconductor poly(3,4-ethylene-dioxythiophene) doped with polystyrene sulfonic acid and Zn. The devices exhibit rectification ratios in the range of 102:1 to 103:1 at biases of ±1 V and ±10 V, respectively. The devices demonstrate rectification at frequencies up to 250 kHz. A full-wave bridge rectifier circuit written onto a glass substrate converts ac to dc up to 250 kHz and ±5 V.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Wu, W., and Woo, E. P., Science 290 (15), 2123 (2000).CrossRefGoogle Scholar
2. Garnier, F., Hajlaoui, R., Yassar, A., and Srivastava, P., Science 265 (16), 1684 (1994).CrossRefGoogle Scholar
3. Sirringhaus, H., Tessler, N., and Friend, R. H., Science 280 (12), 1741 (1998).CrossRefGoogle Scholar
4. Rogers, J. A., Bao, Z., and Dodabalapur, A., Proc. IEEE 21 (3), 100 (2000).Google Scholar
5. Gelinck, G. H., Geuns, T. C. T., and de Leeuw, D. M., Appl. Phys. Lett. 77 (10), 1487 (2000).CrossRefGoogle Scholar
6. Lous, J., Blom, P. W. M., Molenkamp, L. W., and de Leeuw, D. M., Phys. Rev. B 51 (23), 17251 (1995).CrossRefGoogle Scholar
7. Taylor, D. M. and Gomes, H. L., J. Phys. D.: Appl. Phys. 28, 2554 (1995).CrossRefGoogle Scholar
8. Miyauchi, S., Kaneko, Y., Sorimachi, Y., and Tsubata, I., Synth. Met. 28, 747 (1989).CrossRefGoogle Scholar
9. Gupta, R., Misra, S. C. K., Malhotra, B. D., Beladakere, N. N., and Chandra, S. S., Appl. Phys. Lett. 58, 51 (1991).CrossRefGoogle Scholar
10. Yang, Y. and Heeger, A. J., Appl. Phys. Lett. 64 (10), 1245 (1994).CrossRefGoogle Scholar
11. Carter, S. A., Angelopoulos, M., Karg, S., Brock, P. J., and Scott, J. C., Appl. Phys. Lett. 70 (16), 2067 (1997).CrossRefGoogle Scholar
12. Singh, J., Semiconductor Devices (Wiley, New York, 2001).Google Scholar
13. Heeger, A. J., “Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials”, MRS Bulletin, November 2001, 900.CrossRefGoogle ScholarPubMed