Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T10:09:52.144Z Has data issue: false hasContentIssue false

Discrimination of Surface Textures Using Fractal Methods

Published online by Cambridge University Press:  03 September 2012

Jill P. Card
Affiliation:
Digital Equipment Corp., 77 Reed Rd., Hudson, MA 01749-2810
J. M. Hyde
Affiliation:
Digital Equipment Corp., 77 Reed Rd., Hudson, MA 01749-2810
T. Giversen
Affiliation:
Digital Equipment Corp., 77 Reed Rd., Hudson, MA 01749-2810
Get access

Abstract

This paper investigates the use of fractal metrics for discrimination of copper surface textures. Measurements of copper surfaces, using contacting profilometry, provided the raw data for the fractal analysis. The samples tested included copper foil samples and a copper lead frame, typical of those in use in plastic electronic packages. The fractal Hausdorf dimension and upper/lower ranges of fractal scale are analyzed by the coastline method and compared using Bonferroni multiple confidence limits. Metrics show significant differences between sample couplets, indicating significant precision in the fractal approach to adequately quantify surface texture qualities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Packham, D.E., in Adhesion Aspects of Polymeric Coatings, edited by Mittal, K. (Plenum, NY, 1983). pp. 1941.Google Scholar
2. Chesters, S., Wang, H., Kasper, G., Solid State Technology, Jan. 1991, 73.Google Scholar
3. Martin, J.W. and Bentz, D.P., J. Coatings Tech., 59 (745), 3541 (1987).Google Scholar
4. Majumdar, A. and Tien, C.L., Wear, 136, 313 (1990).Google Scholar
5. Brown, C.A., Charles, P.D., Johnsen, W.A., Chesters, S., Wear, 161, 61 (1993).Google Scholar
6. Brown, C.A. and Savary, G., Wear, 141, 211 (1991).Google Scholar
7. Fahmy, Y., Russ, J.C., Koch, C.C., J. Mater. Res., 6 (9), 18561861 (1991).Google Scholar
8. Stubbendieck, G.T. and Oldham, W.B., IEEE Int. Joint Conf. on Neural Networks, 3, 717–23 (1992).Google Scholar
9. Mandelbrot, B.B., The Fractal Geometry of Nature, (W.H. Freeman and Co., New York, 1983), p. 2557.Google Scholar
10. Dubuc, B., Zucker, S.W., Tricot, C., Quinlou, J.F., Wehbi, D., Proc. R. Soc. Lond. A, 425, 113 (1989).Google Scholar
11. Peleg, S., Naor, J., Hartley, R., Avnir, D, IEEE Trans. Pattern Anal. and Mach. Intell., PAMI-6 (4), 518523, (1984).Google Scholar
12. Fischer, H. and Nittmann, J., CEC-Vienna Report No. 94–05, 1994.Google Scholar
13. Dubuc, B, Quiniou, J.F., Roques-Carmes, C., Tricot, C., Zucker, S.W., Physical Rev. A, 39 (3), 15001512 (1989).Google Scholar
14. Richardson, L.F., General Systems Yearbook, 6, 139 (1961).Google Scholar
15. Underwood, E.E. and Banerji, K., Mater. Sci. and Eng., 80, 1 (1986).Google Scholar
16. Brown, C.A., Coastfrax U.S. Patent pending, 1993.Google Scholar