Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T08:43:42.416Z Has data issue: false hasContentIssue false

Dislocation Core Structure and the Anomalous Yield Behavior of Li2 Ordered Alloys At Elevated Temperatures

Published online by Cambridge University Press:  21 February 2011

V. Vitek
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
D. P. Pope
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
Get access

Abstract

In many LI2 ordered alloys the flow stress increases with increasing temperature and is in this “anomalous” regime strongly dependent on orientation and sense of the applied stress. These dependences can be predicted from the nature of the dissociation and core structure of the 1/2<101> screw superpartials in these alloys. Computer modelling shows that two different configurations, a glissile one on {lll} planes and a sessile one on {010} planes, exist and both are described here in detail. The anomalous increase of the flow stress may then be explained by an increasing amount of core transformations from the glissile to sessile forms as the temperature increases. The theoretical model for the immobilization of screw dislocations by this mechanism is then discussed and its validity illustrated by comparison with experimental results on Ni3 (Al, Ta) single crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Christian, J. W., Metall. Trans. A 14, 1237 (1983).CrossRefGoogle Scholar
2. Meshii, M., editor, Mechanical Properties of B.C.C. Metals (TMS-AIME, Warrendale, Pennsylvania, 1982).Google Scholar
3. Vitek, V., Crystal Lattice Defects 5, 1 (1974).Google Scholar
4. Vitek, V., Proc. Conf. Dislocations and Properties of Real Materials, The Metal Society London, to be published (1985).Google Scholar
5. Jones, I. P. and Hutchinson, W. B, Acta Metall. 29, 968 (1981).Google Scholar
6. Bacon, D. J. and Martin, J. W., Phil. Mag. A 43, 883 (1981).Google Scholar
7. Minonishi, Y., Ishioka, S., Koiwa, M., Morozumi, S. and Yamaguchi, M., Philos. Mag. A 43, 1017 (1983).Google Scholar
8. Stohr, J. F. and Poirier, J.-P., Philos. Mag. 25, 1313 (1972).Google Scholar
9. Regnier, P. and Dupouy, J. M., Phys. Stat. Sol. 39, 79 (1970).CrossRefGoogle Scholar
10. Yamaguchi, M., Mechanical Properties of B.C.C. Metals, edited by Meshii, M. (TMS-AIME: Warrendale, Pennsylvania, 1982).Google Scholar
11. Umakoshi, Y., Yamaguchi, M. and Yamane, T., Acta Metall. 32, 649 (1984).Google Scholar
12. Doukhan, N., Duclos, R. and Escaig, B., J. Phys. Paris 407,381 (1979).Google Scholar
13. Phillips, D. S. and Cadoz, J. L., Philos. Mag. A 46, 583 (1982).Google Scholar
14. Poirier, J.-P. and Vergobi, B., Physics of the Earth and Planetary Interiors 16, 370 (1978).CrossRefGoogle Scholar
15. Westbrook, J. W., Trans. TMS-AIME 209, 898 (1957).Google Scholar
16. Davies, R. G. and Stoloff, N. S., Trans. TMS-AIME 223, 714 (1965).Google Scholar
17. Lall, C., Chin, S. and Pope, D. P., Metall. Trans. A 10, 1323 (1979).Google Scholar
18. Shah, D. and Lin, L., J. Metals 32, 62 (1980).Google Scholar
19. Ezz, S. S., Pope, D. P. and Paidar, V., Acta Metall. 30, 921 (1982).Google Scholar
20. Umakoshi, Y., Pope, D. P. and Vitek, V., Acta Metall. 32, 449 (1984).Google Scholar
21. Pope, D. P. and Ezz, S. S., Int. Metalls. Rev. 29, 136 (1984).Google Scholar
22. Pope, D. P. and Vitek, V., this symposium.Google Scholar
23. Kear, B. H. and Hornbecker, M. F., Trans. Am. Soc. Metals 59, 613 (1966).Google Scholar
24. Thornton, P. H., Davies, R. G. and Johnston, T. L., Metall. Trans. A 1, 207 (1970).CrossRefGoogle Scholar
25. Kear, B. H. and Wilsdorf, H.G.F., Trans. TMS-AIME 224, 382 (1962).Google Scholar
26. Yamaguchi, M., Paidar, V., Pope, D. P. and Vitek, V., Philos. Mag. 45, 867 (1982).Google Scholar
27. Paidar, V., Yamaguchi, M., Pope, D. P. and Vitek, V., Philos. Mag. 45, 883 (1982).CrossRefGoogle Scholar
28. Paidar, V., Pope, D. P. and Vitek, V., Acts Metall. 32, 435 (1984).Google Scholar
29. Yamaguchi, M., Pope, D. P., Vitek, V. and Umakoshi, Y., Philos. Mag. A 43, 1265 (1981).Google Scholar
30. Yamaguchi, M., Vitek, V. and Pope, D. P., Philos. Mag. A 43, 1027 (1981).Google Scholar
31. Paidar, V., Pope, D. P. and Yamaguchi, M., Scripta Metall. 15, 1029 (1981).Google Scholar
32. Tichy, G., Vitek, V. and Pope, D. P., this symposium.Google Scholar
33. Flinn, P. A., Trans. TMS-AIME 218, 145 (1960).Google Scholar
34. Takeuchi, S. and Kuramoto, E., Acta Metall. 21, 415 (1973).CrossRefGoogle Scholar
35. Friedel, J., Dislocations and Mechanical Properties of Crystals (John Wiley: New York, 1957) p. 330.Google Scholar
36. Escaig, B., J. Phys. Paris 29, 225 (1968).Google Scholar