Published online by Cambridge University Press: 10 February 2011
The results of recent ab-initio, relaxed, computations for the energy barrier to the motion of a kink on a 30° partial dislocation in silicon are summarised. The electronic structure and charge density are given. We suggest that the shearing motions involved with ductility and kink motion are controlled by the band structure energy involving valence electrons, whereas the tensile forces involved in fracture depend on both ion-ion and valence forces. Experimental atomic resolution TEM images of dissociated dislocation lines in silicon are discussed. These are formed using “forbidden reflections” with the dislocation lines lying on (111), normal to the electron beam. For images of samples at 600 C recorded at video rates, differences between successive frames reveal the motion of individual kinks, from which the kink velocity and migration energy can be estimated.