Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-18T22:51:43.678Z Has data issue: false hasContentIssue false

Dislocation Kink Motion - Ab-Initio Calculations and Atomic Resolution Movies

Published online by Cambridge University Press:  10 February 2011

J. C. H. Spence
Affiliation:
Dept. of Physics, Arizona State University, Tempe, Az. 85287. Spence@ASU.EDU
H. R. Kolar
Affiliation:
Dept. of Physics, Arizona State University, Tempe, Az. 85287. Spence@ASU.EDU
Y. Huang
Affiliation:
Dept. of Physics, Arizona State University, Tempe, Az. 85287. Spence@ASU.EDU
H. Alexandera
Affiliation:
II Physics Institute, Universitat zu Koln, D5, 41 Germany.
Get access

Abstract

The results of recent ab-initio, relaxed, computations for the energy barrier to the motion of a kink on a 30° partial dislocation in silicon are summarised. The electronic structure and charge density are given. We suggest that the shearing motions involved with ductility and kink motion are controlled by the band structure energy involving valence electrons, whereas the tensile forces involved in fracture depend on both ion-ion and valence forces. Experimental atomic resolution TEM images of dissociated dislocation lines in silicon are discussed. These are formed using “forbidden reflections” with the dislocation lines lying on (111), normal to the electron beam. For images of samples at 600 C recorded at video rates, differences between successive frames reveal the motion of individual kinks, from which the kink velocity and migration energy can be estimated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hirth, J. P. and Lothe, J., Theory of Dislocations (McGraw-Hill, New York, 1982).Google Scholar
2 Patel, J. R. and Chaudhuri, A. R., Phys. Rev. 143, 601 (1966).Google Scholar
3 Kimerling, L. C., Patel, J. R., Benton, J. L. and Freeland, P. E., Proc. Int. Conf. Defects and Radiation Effects in Semicon., Osio, Japan No. 59, 11 (1980).Google Scholar
4 Duesbery, M., Richardson, G., Solid State and Materials Sciences, 17, 1(1991).Google Scholar
5 Alexander, H. and Teichler, H.. in: Materials Science and Technology, vol 4, (eds. Cahn, R. W., Hassen, P., Kramer, E. J., VCH Weinheim) pp 251. 1993 Google Scholar
6 Hirsch, P. B., Materials Science and Technology, 1, 666 (1985).Google Scholar
7 Heggie, M. and Jones, R., Inst, Phys. Conf. Ser. No. 67, 1 (1983).Google Scholar
8 Hirsch, P. B., J. Micros. 118, 3 (1980).Google Scholar
9 Louchet, F. and Thibault-Desseaux, J., Rev. Phys. Appl. 22, 207 (1987).Google Scholar
10 Möller, H.-J., Acta Metallurgica, 26, 963 (1978).Google Scholar
11 Heggie, M., Jones, R. and Umerski, A. Phys. Stat. Sol. (a)138, 383 (1993).Google Scholar
12 Bigger, J., Mclnnes, D., Sutton, A., Payne, M., Stich, I., King-Smith, R., Bird, D. and Clark, L., Phys. Rev. Lett. 69, 2224 (1992).Google Scholar
13 Chelikowsky, J. R., Phys. Rev. Lett. 49, 1569 (1982).Google Scholar
14 Farber, B. Ya., lunin, Yu. L., Nikitenko, V. I., Alexander, H and Specht, P, Phys. Stat. Sol (a) 138, 557 (1993) and earlier papers.Google Scholar
15 Alexander, H., Spence, J., Shindo, D., Gottschalk, H., Long, N., Phil. Mag. A 53, 627 (1986).Google Scholar
16 Spence, J. C. H. and Kolar, H., Philo. Mag. A, 39, 59 (1979).Google Scholar
17 Spence, J.C.H., 39th Ann. Proc. Electr Micros. Soc., ed. Bailey, G. 120 (1981).Google Scholar
18 Jones, R., J Phys. (Orsay), 40, C6, Suppl. 6, 33 (1979).Google Scholar
19 Marklund, S., J Phys. (Orsay), 44, C4, Suppl. 9, 25 (1983).Google Scholar
20 Northrup, J. E., Cohen, M. L., Chelikowsky, J. R., Spence, J. C. H., and Olsen, A., Phys. Rev. B 24, 4623 (1981).Google Scholar
21 Sankey, O. F. and Niklewski, D. J., Phys. Rev. B. 40, 3979 (1989).Google Scholar
22 Huang, Y., Spence, J., Sankey, O., Adams, G., Surf. Sci. 256, 344 (1991); G. Adams and O. Sankey, Phys. Rev. Lett. 67, 867 (1991); D. Drabold, P. Fedders, S. Klemm and O. Sankey, Phys. Rev. Lett. 67, 2179 (1991).Google Scholar
23 Hamann, D. R., Schliiter, M. and Chiang, C., Phys. Rev. Lett. 43, 1494 (1979).Google Scholar
24 Harris, J., Phys. Rev. B 31, 1770 (1985).Google Scholar
25 Tersoff, J., Phys. Rev. B 38, 9902 (1988).Google Scholar
26 Dodson, B. W., Phys. Rev. B 35, 2795 (1987).Google Scholar
27 Kaxiras, E. and Pandey, K. C., Phys. Rev. B 38, 12736 (1988).Google Scholar
28 Koizumi, H. and Ninomiya, T., J. Phys. soc. Jpn. 44, 898 (1978).Google Scholar
29 Huang, Y., Spence, J. and Sankey, O., Phys. Rev. Letts. 74, p. 3392 (1995).Google Scholar
30 Trinczek, U. and Teichler, H., Phys. Stat Sol. (a) 137, 577 (1993).Google Scholar
31 Nikitenko, V., Farber, B. and lunin, Yu., Sov. Phys. JETP 66 (4), 738 (1987).Google Scholar
32 Jones, R., in:”Dislocations in Solids” - Proc. Yamada Conf. IX, (eds. Suzuki, H. et. al.), Univ. of Tokyo Press, 343 (1985).Google Scholar
33 Jones, R., Philos. Mag. B, 42, 213 (1980).Google Scholar
34 Patel, J. R. and Chaudhuri, A. R., Phys. Rev. 143, 601 (1966).Google Scholar
35 Spence, J. C. H., Huang, Y. M. and Sankey, O.F., Acta Metall. 41, 2815 (1993).Google Scholar
36 Rybicki, G. C. and Pirouz, P., NASA Technical Paper 2863 (1988). T. Michalski, Y. M. Huang and J. Spence, unpublished work (1991).Google Scholar
37 Gottschalk, H., Hiller, N., Sauerland, S., Specht, P., H. Alexander. Phys. Stat. Sol. (a)138, p.547 (1993)Google Scholar
38 Wessel, K. and Alexander, H.. Phil Mag. 45, p. 1523 (1977).Google Scholar
39 Bulatoff, V. and Argon, A.. These proceedings.Google Scholar
40 Hirsch, P., Ourmazd, A., Pirouz, P.. Inst. Phys. Conf. Ser. Vol.60, p. 29 (1981)Google Scholar
41 Louchet, A.. Phil. Mag. 43, p. 1289 (1981).Google Scholar
42 Gottschalk, H., Alexander, H., Dietz, V.. Inst. Phys. Conf. Ser. Vol.87, p. 339 (1987)Google Scholar
43 Kusters, K. and Alexander, H.. Physica 116B. p.594 (1983).Google Scholar