Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-29T14:45:20.314Z Has data issue: false hasContentIssue false

Dislocation Models for Strengthening in Nanostructured Metallic Multilayers

Published online by Cambridge University Press:  14 March 2011

A. Misra
Affiliation:
MST Division, Los Alamos National Laboratory, MS K765, Los Alamos, NM 87545
J. P. Hirth
Affiliation:
MST Division, Los Alamos National Laboratory, MS K765, Los Alamos, NM 87545
H. Kung
Affiliation:
MST Division, Los Alamos National Laboratory, MS K765, Los Alamos, NM 87545
R. G. Hoagland
Affiliation:
MST Division, Los Alamos National Laboratory, MS K765, Los Alamos, NM 87545
J. D. Embury
Affiliation:
MST Division, Los Alamos National Laboratory, MS K765, Los Alamos, NM 87545
Get access

Abstract

Ultra-high strength metallic multilayers are ideal for investigating the effects of length scales in plastic deformation of metallic materials. Experiments on model systems show that the strengths of these materials increase with decreasing bilayer period following the Hall-Petch model. However, as the layer thickness is reduced to the nm-scale, the number of dislocations in the pile-up approaches one and the pile-up based Hall-Petch model ceases to apply. For nm-scale semi-coherent multilayers, we hypothesize that plastic flow occurs by the motion of single dislocation loops, initially in the softer layer, that deposit misfit type dislocation arrays at the interface and transfer load to the harder phase. The stress concentration eventually leads to slip in the harder phase, overcoming the resistance from the misfit arrays at the interface. A model is developed within the framework of classical dislocation theory to estimate the strengthening from this mechanism. The model predictions are compared with experimentally measured strengths.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Clemens, B.M., Kung, H. and Barnett, S.A., MRS Bulletin, 24, 20, February (1999).Google Scholar
2. Anderson, P.M., Foecke, T. and Hazzledine, P.M., MRS Bulletin, 24, 27, February (1999).Google Scholar
3. Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M. and Embury, J.D., Scripta Mat., 39, 555 (1998).Google Scholar
4. Anderson, P.M. and Li, C., NanoStructured Materials, 5, 349 (1995).Google Scholar
5. Rao, S.I., Hazzledine, P.M. and Dimiduk, D., Mat.Res.Soc.Sym.Proc., 362, 67 (1995).Google Scholar
6. Misra, A., Verdier, M., Kung, H., Embury, J.D. and Hirth, J.P., Scripta Mat., 41, p 973 (1999).Google Scholar
7. Embury, J.D. and Hirth, J.P., Acta Met., 42, 2051 (1994).Google Scholar
8. Nix, W.D., Scripta Mat., 39, 545 (1998).Google Scholar
9. Huang, H. and Spaepen, F., Acta Mat., 48, 3261 (2000).Google Scholar
10. Hirth, J.P. and Feng, X., J.Appl. Phys., 67, 3343 (1990).Google Scholar
11. Kreidler, E.R. and Anderson, P.M., Mat.Res.Soc.Sym.Proc., 434, 159 (1996).Google Scholar
12. Yamamoto, T., LANL, unpublished research.Google Scholar
13. Shoykhet, B., Grinfeld, M.A. and Hazzledine, P.M., Acta Mater., 46, 3761 (1998).Google Scholar
14. Hirth, J.P. and Lothe, J., Theory of Dislocations, Krieger, p 734 (1992).Google Scholar
15. Verdier, M., Niewczas, M., Embury, J.D., Nastasi, M. and Kung, H., Mat. Res. Soc. Sym. Proc., 522, 77 (1998).Google Scholar
16. Bunshah, R.F. et al. , Thin Solid Films, 72, 261 (1980).Google Scholar
17. Menezes, S. and Anderson, D.P., J. Electrochem. Soc., 137, 440 (1990)Google Scholar
18. Tench, D.M. and White, J.T., J. Electrochem. Soc., 138, 3757 (1991).Google Scholar
19. Hoagland, R.G., Phil.Mag.A, submitted.Google Scholar
20. Rao, S.I. and Hazzledine, P.M., Phil. Mag.A, 30, 2011 (2000).Google Scholar