Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T04:39:17.009Z Has data issue: false hasContentIssue false

Dislocation Reduction and Structural Properties of GaN layers Grown on N+-implanted AlN/Si (111) Substrates

Published online by Cambridge University Press:  01 February 2011

Muhammad Jamil
Affiliation:
mjamil@uamail.albany.edu, College on Nanoscale Science and Engineering, University at Albany, NY, Optoelectronics, 255 Fuller Rd,, Albany, NY, 12203, United States, 518-442-2576
James R Grandusky
Affiliation:
jgrandusky@uamail.albany.edu, College of Nanoscale Science and Engineering, University at Albany-State University of New York, Optoelectronics, United States
Vibhu Jindal
Affiliation:
vjindal@uamail.albany.edu, College of Nanoscale Science and Engineering, University at Albany-State University of New York, Optoelectronics, United States
Neeraj Tripathi
Affiliation:
ntripathi@uamail.albany.edu, College of Nanoscale Science and Engineering, University at Albany-State University of New York, Optoelectronics, United States
Fatemeh Shahedipour Sandvik
Affiliation:
sshahedipour@uamail.albany.edu, College of Nanoscale Science and Engineering, University at Albany-State University of New York, Optoelectronics, United States
Get access

Abstract

An alternative scheme to the growth of crack free, dislocation reduced III-Nitride layers on Silicon substrate has been previously introduced that relies on formation of an ion implanted defective layer in the substrate with implantation taking place in the presence of AlN buffer layer. Here, the effects of N+ ion implantation of AlN/Si (111) substrate on the structural and optical properties of the overgrown GaN epilayers have been investigated. Temperature dependent photoluminescence has been used to investigate the impact of the implantation conditions (energy and dose) on optical and structural quality of the GaN overgrown layers. A correlation between PL and high resolution x-ray diffraction (XRD) of the overgrown GaN layers show that the lowest FWHM of bandedge, the highest bandedge to deep defect blue luminescence band ratio, and the lowest symmetric rocking curve FWHM are achieved for the optimized implantation conditions. This correlates well with the results of etch pit density measurement showing an order of magnitude reduction in threading dislocation defect density

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dadgar, A., Strittmatter, A.. Bläsing, J., Poschenrieder, M., Contreras, O., Veit, P., Riemann, T., Bertram, F., Reiher, A., Krtschil, A., Diez, A., Hempel, T., Finger, T., Kasic, A., Schubert, M., Bimberg, D., Ponce, F. A., Christen, J. and Krost, A., Phys. Stat. Sol. (c) 0 (6), 15831606, (2003).Google Scholar
2. Jang, S-H., Lee, C-R., J. Crystal Growth 253, 6470, (2003).CrossRefGoogle Scholar
3. Zamir, S., Meyler, B., Salzman, J, J. Crystal Growth 243, 375380 (2002).Google Scholar
4. Yang, Z., Guarin, F., Tao, I.W., Wang, W.I. and Lyer, S. S., J. Vac. Sci. Technol. B 13, 789791, (1995).Google Scholar
5. Dadgar, A., Poschenrieder, M., Blasing, J., Fehse, K., Diez, A., and Krost, A., Appl. Phys. Lett. 80, 36703672, (2002).Google Scholar
6. Zamir, S., Meyler, B., Salzman, J., Appl. Phys. Lett. 78, 288290, (2001).CrossRefGoogle Scholar
7. Zamir, S., Meyler, B., Salzman, J.,.J. Crystal Growth 230, 341345, (2001).CrossRefGoogle Scholar
8. Koh, E. K., Park, Y. J., Kim, E. K., Park, C. S., Lee, S. H., Lee, J. H. and Choh, S. H., J. Crystal Growth 218, 214220 (2000).CrossRefGoogle Scholar
9. Contreras, O., Ponce, F. A., Christen, J., Dadgar, A. and Krost, A., Appl. Phys. Lett. 81, 47124714, (2002).CrossRefGoogle Scholar
10. Wu, J., Han, X., Li, J., Li, D., Lu, Y., Wei, H., Cong, G., Liu, X., Zhu, Q., Wang, Z., J. Cryst. Growth 279, 335340, (2005).CrossRefGoogle Scholar
11. Takeuchi, T., Amano, H., Hiramatsu, K., Sawaki, N., Akasaki, I., J. Cryst. Growth 115, 634638, (1991).CrossRefGoogle Scholar
12. Yang, J. W., Sun, C. J., Chen, Q., Anwar, M. Z., Asif Khan, M., Nikishin, S. A., Seryogin, G. a., Osinky, A. V., Chernyak, L., Temkin, H., Hu, C. and Mahajan, S., Appl. Phys. Lett. 69, 35663568, (1996).CrossRefGoogle Scholar
13. Kobayashi, N. P., Kobayashi, J. T., Dapkus, P. D., Choi, W. J. and Bond, A. E. and Zhang, X., Rich, D. H., Appl. Phys. Lett. 71, 35693571, (1997).CrossRefGoogle Scholar
14. Liu, R., Ponce, F. A., Dadgar, A. and Krost, A., Appl. Phys. Lett. 83, 860862, (2003).CrossRefGoogle Scholar
15. Zang, K. Y., Wang, L. S., Chua, S. j. and Thompson, C. V., J. Cryst. Growth 268, 515520, (2004).CrossRefGoogle Scholar
16. Tolle, J., Roucka, R., Tsong, I. S., Ritter, C., Crozier, P. A., Chizmeshya, A. V. G. and Kouvetakis, J., Appl. Phys. Lett. 82, 23982400, (2003).CrossRefGoogle Scholar
17. Jamil, M., Grandusky, J. R., Jindal, V., Shahedipour-Sandvik, F., Guha, S. and Arif, M., Appl. Phys. Lett. 87, 21032105, (2005).CrossRefGoogle Scholar
18. Jamil, M., Grandusky, J. R., Jindal, V. and Shahedipour-Sandvik, F., “Submitted” APL 2005 Google Scholar
19. Heying, B., Wu, X. H., Keller, S., Li, Y., Kapolnek, D., Keller, B. P., DenBaars, S. P. and Speck, J. S., Appl. Phys. Lett. 68, 643645, (1996).CrossRefGoogle Scholar
20. Metzger, T., Hopler, R., Born, E., Ambacher, O., Stutzmann, M., Stommer, R., Schuster, M., Gobel, H., Christiansen, S., Albrecht, M. and Strunk, H. P., Philosophical Magazine A, 77, 10131025, (1998).CrossRefGoogle Scholar
21. Reshchikov, M. A. and Morkoç, H., J. Appl. Phys. 97, 061301–95, (2005)CrossRefGoogle Scholar
22. Xu, S. J., Li, G., Chua, S. J., Wang, X. C., Wang, W., Appl. Phys. Lett. 72, 24512453, (1998).CrossRefGoogle Scholar
23. Shi, J. Y., Yu, L. P., Wang, Y. Z., Zhang, G. Y. and Zhang, H., Appl. Phys. Lett. 80, 22932295, (2002).CrossRefGoogle Scholar
24. Cremades, A., Piqueras, J., Xavier, C., Monteiro, T., Pereira, E., Meyer, B. K., Hofmann, D. M. and Fischer, S., Material Sci. and Engineering, B42, 230234, (1996).CrossRefGoogle Scholar
25. Elsner, J., Jones, R., Heggie, M. I., Sitch, P. K., Haugk, M., Trauenhein, Th., Öberg, S. and Briddon, P. R., Phys. Rev. B, 58, 1257112574, (1998).Google Scholar