No CrossRef data available.
Published online by Cambridge University Press: 11 February 2011
We present evidence for the operation on reconstructed Au(001) of a novel mechanism, involving dislocation motion, which is much more efficient than surface diffusion to redistribute mass around nanoindentations. Cross-slip of individual dislocations generated around the indentation point, with a screw component perpendicular to the surface, is shown to be responsible for the generation of multiple-storied, crystallographically-oriented terraces around the nanoindentation points. We also show that standard dislocation theory can be used to quantitatively describe the characteristics of the dislocations involved in the different processes around the nanoindentation.