Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T07:18:34.067Z Has data issue: false hasContentIssue false

Dislocations In GaN/Sapphire: Their Distribution And Effect On Stress And Optical Properties

Published online by Cambridge University Press:  10 February 2011

S. C. Jain
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
K. Pinardi
Affiliation:
Chamlers University of Technology, Department of Physics, S-41296 Göteborg, Sweden.
H. E. Maes
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
R. Van overstraeten
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
M. Willander
Affiliation:
Chamlers University of Technology, Department of Physics, S-41296 Göteborg, Sweden.
A. Atkinson
Affiliation:
Dapt. of Materials, Imperial College of Science, Technology and Medicine, london, UK.
Get access

Abstract

Recent Raman experiments show that strain in GaN layers grown on the c-plane of sapphire is low at the surface, increases with depth, and is maximum at the interface. We show that this stress distribution can be attributed to the presence of a large number of threading dislocations. GaN photonic devices work in spite of large density of dislocations present in the GaN epilayers. We describe a model which shows that the effect of saturation of traps in the dislocations with increasing number of injected carriers can explain the high performance of the GaN devices containing the dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. (a) MRS Bulletin Vol.22, (Feb. 1997); (b) Mat. Res. Soc. Symp. Proc. Vol. 449 (1997).Google Scholar
2. Jain, S. C., Germanium-Silicon Strained Layers and Heterostructures, Advances in Electronics and Electron Physics series, Suppl. 24 (Academic Press, Boston 1994).Google Scholar
3. Ager, J. W. III, Suski, T., Ruvimov, S., Krueger, J., Conti, G., Weber, E. R., Bremser, M. D., Davis, R., and Kuo, C. P., Mat. Res. Soc. Symp. Proc. 449, 775 (1997).Google Scholar
4. Siegle, H., Hoffmann, A., Eckey, L., Thomsen, C., Detchprohm, T., Hiramatsu, K., Davis, T., and Steeds, J. W., Mat. Res. Soc. Symp. Proc. 449, 677 (1997).Google Scholar
5. Jain, S. C., Pinardi, K., Willander, M., Atkinson, A., Maes, H. E., and Overstraeten, R. Van, Semicond. Sci. Technol. 12, 1507 (1997).Google Scholar
6. Kozawa, T., Kachi, T., Kano, H., Nagasawa, H., Koide, N., and Watnabe, K., J. Appl. Phys. 77, 4389 (1995).Google Scholar
7. Lovergine, N., Liaci, L., Ganiere, J. D., Leo, G., Drigo, A. V., Romanato, F., Mancini, A. M., and Vasanelli, L., J. Appl. Phys. 78, 229 (1995).Google Scholar
8. Values of ρc, are not known with any certainty. Different authors have used different values of this parameter [2].Google Scholar
9. Pauw, P. De, Mertens, R., Overstraeten, R. Van, and Jain, S. C., Solid State Electronics 25, 67 (1984).Google Scholar