Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T10:20:00.615Z Has data issue: false hasContentIssue false

Dissipation Mechanisms in Thin-Film Silicon Microresonators on Glass Substrates

Published online by Cambridge University Press:  01 February 2011

J. Gaspar
Affiliation:
INESC Microsistemas e Nanotecnologias, Lisbon, Portugal Dept. of Materials Engineering, Instituto Superior Técnico, Lisbon, Portugal
V. Chu
Affiliation:
INESC Microsistemas e Nanotecnologias, Lisbon, Portugal
J. P. Conde
Affiliation:
INESC Microsistemas e Nanotecnologias, Lisbon, Portugal Dept. of Materials Engineering, Instituto Superior Técnico, Lisbon, Portugal
Get access

Abstract

The fabrication and characterization of thin-film silicon resonators processed at temperatures below 110°C on glass substrates is described. The microelectromechanical structures consist of surface micromachined bridges of phosphorus-doped hydrogenated amorphous silicon (n+-a-Si:H) deposited by plasma-enhanced chemical vapor deposition (PECVD) suspended over a metallic gate counterelectrode. The structures are electrostatically actuated. Resonance frequencies in the MHz range and quality factors as high as 5000 are observed in vacuum. The effect of the geometrical dimensions of the bridges and of the measurement pressure on the resonance amplitude and frequency is studied. The elementary energy dissipation processes in a-Si:H-based resonators are discussed. At atmospheric pressure, air damping dominates the energy dissipation. In vacuum, intrinsic mechanisms, such as clamping losses and surface losses, control the energy dissipation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Judy, Jack W., Smart Mater. Struct. 10, pp. 11151134, 2001.Google Scholar
2. See for example, Maluf, N., An introduction to microelectromechanical systems engineering, Artech House, Boston, 2000.Google Scholar
3. Gaspar, J., Chu, V., Conde, J. P., J. Appl. Phys. 93, pp. 1001810029, 2003.Google Scholar
4. Gaspar, J., Chu, V., Louro, N., Cabeça, R., Conde, J. P., J. Non-Cryst. Solids, 299–302 pp. 12241228, 2002.Google Scholar
5. Gaspar, J., Chu, V., Conde, J. P., IEEE MEMS'2004 Proc., in press.Google Scholar
6. Syllaios, A. J., Schimert, T. R., Gooch, R. W., McCarde, W. L., Ritchey, B. A., Tregilgas, J. H., Mat. Res. Soc. Symp. Proc. 609, pp. A14.4.1–A14.4.6, 2000.Google Scholar
7. See for example, Elwenspoeck, M., Wiegerink, R., Mechanical Microsensors, Springer, Berlin, 2001.Google Scholar
8. See for example, Cleland, A. N., Foundations of Nanomechanics, Springer, New York, 2002.Google Scholar
9. Alpuim, P., Chu, V., Conde, J. P., J. Appl. Phys. 86, pp. 38123821, 1999.Google Scholar
10. Alpuim, P., Chu, V., Conde, J. P., J. Vac. Sci. Technol. A 21, pp. 10481054, 2003.Google Scholar
11. Gaspar, J., Chu, V., Conde, J. P., Mat. Res. Soc. Symp. Proc. 762, pp. A18.1.1– A18.1.5, 2003.Google Scholar
12. Newell, W. E.. Science 161, pp. 13201326, 1968.Google Scholar
13. Gaspar, J., Chu, V., and Conde, J. P., Appl. Phys. Lett., in press, 2003.Google Scholar
14. Yang, J., Ono, T., Esashi, M., J. Microelectromech. Syst. 11, pp. 775783, 2002.Google Scholar
15. Lifschitz, R., Roukes, M. L., Phys. Rev. B 61, pp. 56005609, 2000.Google Scholar
16. See for example, Searle, T. M., Properties of amorphous silicon and its alloys, INSPEC, The Institute of Electrical Engineers, London, 1999.Google Scholar