Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T10:08:44.641Z Has data issue: false hasContentIssue false

Distribution and Transport of Charge Carriers in Heterogeneous Electrolyte Systems

Published online by Cambridge University Press:  21 February 2011

Joachim Maier*
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1 7000 Stuttgart 80, Federal Republic of Germany
Get access

Abstract

The thermodynamic point defect concentrations for both ionic (majority) as well as electronic (minority) charge carriers are considered for different types of heterogeneities appearing in ionically conductive solid materials systems. Particularly, the electrical conductivity is discussed for different types of composite electrolytes. Quantitative space charge arguments are shown to be able to explain a variety of different phenomena such as: unusual enhancement of ionic conductivity in two phase samples and in polycrystalline materials, additional conductivity effects in microsized systems; change from cationic to anionic conduction due to heterogeneous doping; simultaneous enhancement of n- and p-conductivity in different electrolyte/ alumina samples, catalytic effects in composite electrolytes as well as chemical interface effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liang, C.C., J. Electrochem. Soc. 120, 1289 (1973).CrossRefGoogle Scholar
2. Maier, J., J. Electrochem. Soc. 134, 1524 (1987).CrossRefGoogle Scholar
3. Maier, J., Mater. Chem. Phys. 17, 485 (1987).Google Scholar
4. Maier, J., Solid State Ionics 18/19, 1141 (1986).CrossRefGoogle Scholar
5. Maier, J., in Science and Technology of Fast Ion Conductors, edited by Tuller, H.L. (Plenum Press, New York), in press.Google Scholar
6. Wagner, J.B., Mater. Res. Bull. 15, 1691 (1980).Google Scholar
7. Nakamura, O. and Goodenough, J.B., Solid State Ionics 7, 125 (1980).Google Scholar
8. Maiet, J., J. Phys. Chem. Solids 46, 309 (1985).Google Scholar
9. Fujitsu, S., Miyayama, M., Koumoto, K., Janagida, H., Kanazawa, T., J. Mater. Sci. 20, 2103 (1985).Google Scholar
10. Maier, J., Solid State Ionics, in press.Google Scholar
11. Kliewer, K.L. and Köhler, J.S., Phys. Rev. A140, 1226 (1965).Google Scholar
12. Poeppel, R.B. and Blakely, J.M., Surf. Sci. 15, 507 (1969).Google Scholar
13. Maier, J., Ber. Bunsenges. Phys. Chem. 90, 26 (1986).CrossRefGoogle Scholar
14. Stoneham, A.M., Walde, E. and Kilner, J.A., Mater. Res. Bull. 14, 1661 (1979).Google Scholar
15. Bunde, A., Dieterich, W., Roman, E., Solid State Ionics 18/19, 147 (1986).Google Scholar
16. Maier, J., Habilitationsschrift, Tübingen, 1987.Google Scholar
17. Baetzold, R.C. and Hamilton, J.F., Surf. Sci. 33, 461 (1972). R.C. Baetzold, J. Phys. Chem. Solids 35, 89 (1974); N. Starbov, J. Inf. Rec. Mater. 13, 307 (1985).Google Scholar
18. Hudson, R.A., Farlow, G.C., and Slifkin, L.M., Phys. Rev. B, 36, 4651 (1987).Google Scholar
19. a) Maier, J., Solid State Ionics 23, 59 (1987), b) J. Maier, S. Prill and B. Reichert, Solid State Ionics, in press.Google Scholar
20. Shahi, K., Wagner, J.B., J. Solid State Chem. 42, 107 (1982).Google Scholar
21. Maier, J., Mater. Res. Bull. 20, 383 (1985).CrossRefGoogle Scholar
22. Maier, J. and Reichert, B., Ber. Bunsenges. Phys. Chem. 90, 666 (1986).CrossRefGoogle Scholar
23. Shukla, A.K., Manoharan, R., and Goodenough, J.B., Solid State Ionics 26, 5 (1988).Google Scholar
24. Maier, J., Solid State Ionics, in press.Google Scholar
25. Valverde-Diez, N., Solid State Ionics, in press; K. Shahi and J.B. Wagner, J. Electrochem. Soc. 128, 6 (1981)Google Scholar
26. Poulsen, F.W., Andersen, N.H., Kindl, B., and Schoonman, J., Solid State Ionics 9/10, 131 (1983); C.C. Liang, A.V. Joshi, and N.E. Hmilton, J. Applied Electrochem. 8, 445 (1978).Google Scholar
27. Simkovich, G., and Wagner, C., J. Catalysis 1, 521 (1962).Google Scholar
28. Murugaraj, P. and Maier, J., Solid State Ionics, in press.Google Scholar
29. Corish, J., Parker, B.M.C., Quigley, J.M., Allnatt, A.R., and Mulcahy, D.C.A., J. Phys. C17, 2689 (1984)Google Scholar
30. Vaidehi, N., Akila, R., Shukla, A.K., Jacob, K.T., Mater. Res. Bull. 21, 909 (1986).Google Scholar
31. Khandkar, A., Tare, V.B., and Wagner, J.B., Rev. Chim. Min. 23, 274 (1986)Google Scholar
32. Fujitsu, S., Koumoto, K., and Janagida, H., Solid State Ionics 18/19, 1146 (1986).Google Scholar
33. Maier, J., Ber. Bunsenges. Phys. Chem. 89, 355 (1985).Google Scholar
34. Shahi, K., and Wagner, J.B., Appl. Phys. Lett. 37, 757 (1980).Google Scholar
35. Shapiro, I., and Kolthoff, I.M., J. Chem. Phys. 15, 41 (1947).Google Scholar
36. Dudney, N.J., J. Am. Ceram. Soc. 70, 65 (1987); Solid State Ionics, in press.Google Scholar
37. Lauer, U., diploma thesis, Tübingen (1988).Google Scholar
38. Wassermann, J., Martin, T.P., and Maier, J., Solid State Ionics, in press.Google Scholar
39. Schreck, E., Läuger, K., and Dransfeld, K., Z. Phys. B62, 331 (1986).Google Scholar
40. Mühlherr, S., Läuger, K., Nicoloso, N., Schreck, E., and Dransfeld, K., Solid State Ionics, in press.Google Scholar
41. Debye, P., and Hückel, E., Physik. Z. 24, 185 (1923).Google Scholar
42. Discussions with Kleitz, M. and Kreuer, K.D. are gratefully acknowledged.Google Scholar