No CrossRef data available.
Published online by Cambridge University Press: 15 July 2011
DNA possesses inherent recognition and self-assembly capabilities, making it attractive templates for constructing functional material structures as building blocks for nanoelectronics. Here we report the use of DNA towards the assembly and electronic functionality of nanoarchitectures based on conjugates of carbon nanotubes (CNTs), nanowires (NWs) and DNA computing on Si-CMOS platform. First, assembly of CNTs with DNA is demonstrated and electrical measurements of these nanoarchitectures demonstrate negative differential resistance in the presence of CNT/DNA interfaces, which indicates a biomimetic route to fabricating resonant tunneling diodes. End-to-end assembly of NWs is realized with designed DNA sequences and process is carried on silicon CMOS based microarray platform. Second, this microarray platform is adopted to perform DNA computing. To begin with, the information present in an image is encoded through the concentrations of various DNA strands via selective hybridization and decoded on microarray to recreate the original image. Lately, various satisfiability (SAT) problems, which has long served as a benchmark problem in DNA computing, are solved on this platform via DNA. The goal in a SAT Problem is to determine appropriate assignments of a set of Boolean variables with values of either “true” or “false” such that the output of the whole Boolean formula is true. Other than making 1st time silicon compatible DNA computing, our studies make us understand bio molecules, especially DNA has various advantages for future hybrid technologies.