Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T08:36:15.198Z Has data issue: false hasContentIssue false

DNA - Directed Synthesis of ZnO Nanowires

Published online by Cambridge University Press:  01 February 2011

Micha Jost
Affiliation:
Jost@mf.mpg.de, Max-Planck-Institute for Metals Research, Stuttgart, 70569, Germany
Petia Atanasova
Affiliation:
atanasova@mf.mpg.de, Max-Planck Institute for Metals Research, PML, Heisenberg Str. 3, Stuttgart, 70569, Germany
Peter Gerstel
Affiliation:
gerstel@mf.mpg.de, Max-Planck-Institute for Metals Research, Stuttgart, 70569, Germany
Wilfried Sigle
Affiliation:
sigle@mf.mpg.de, Max-Planck-Institute for Metals Research, Stuttgart, 70569, Germany
Peter A. van Aken
Affiliation:
vanaken@mf.mpg.de, Max-Planck-Institute for Metals Research, Stuttgart, 70569, Germany
Joachim Bill
Affiliation:
bill@mf.mpg.de, Max-Planck-Institute for Metals Research, Stuttgart, 70569, Germany
Get access

Abstract

In this paper, a new and simple method for the synthesis of ZnO nanowires under very mild conditions is presented. The nanowire preparation is based on mineralization from alkaline aqueous zinc nitrate solution in the presence of fish sperm DNA as a structure-directing agent. The morphological features of the obtained structures were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), while the structural characterization of ZnO was done by X-ray diffraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.-J., and Morkoc, H., J. Appl. Phys. 98, 041301 (2005).Google Scholar
2. Lin, H.M., Tzeng, S.J., Hsiau, P.J., Tsai, W.L., Nanostruct. Mat. 10, 465 (1998).Google Scholar
3. Chang, P.C., Fan, Z., Wang, D., Tseng, W.Y., Chiou, W.A., Hong, J., Lu, J.G., Chem. Mater. 16, p5133 (2004).Google Scholar
4. Chiou, W.T., Wu, W.Y., Ting, J.M., Diamond Relat. Mater. 12, 1841 (2003).Google Scholar
5. Li, Y., Meng, G.W., Zhang, L.D., Phillipp, F., Appl. Phys. Lett. 76, 2011 (2000).Google Scholar
6. Niesen, T., Guire, M.R. De, J. Electroceram. 6, 169 (2001).Google Scholar
7. McBride, R.A., Kelly, J.M., McCormack, D.E., J. Mater. Chem. 13, 1196 (2003).Google Scholar
8. Gerstel, P., Hoffmann, R.C., Lipowsky, P., Jeurgens, L.P.H., J. Bill, F. Aldinger, Chem. Mater. 18, 179 (2006).Google Scholar
9. Gerstel, P., Lipowsky, P., Durupthy, O., Hoffmann, R.C., Bellina, P., Bill, J., Aldinger, F., J. Cer. Soc. Jap. 114, 911 (2006).Google Scholar
10. Bauermann, L. Pitta, Campo, A. del, Bill, J., Aldinger, F., Chem. Mater. 18, 2016 (2006).Google Scholar
11. Jost, M., Gerstel, P., Bill, J., Aldinger, F. in The Nature of Design—Utilizing Biology's Portfolio, edited by Naik, R.R., Perry, C.C., Shiba, K., Ulijn, R., (Mater. Res. Soc. Symp. Proc. 1008E, Warrendale, PA, 2007), pp. T0403.Google Scholar
12. Jost, M., Bill, J., Aldinger, F., Filed for PCT Application (PCT/EP/2007/003778), April 27 (2007).Google Scholar
13. Oliveira, A.P.A., Hochepied, J.F., Grillon, F., Berger, M.H., Chem. Mater. 15, 3202 (2003).Google Scholar