Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T10:40:35.899Z Has data issue: false hasContentIssue false

DNA Transfection Efficiency of Antimicrobial Peptide as Revealed by Molecular Dynamics Simulation

Published online by Cambridge University Press:  25 June 2013

Namsrai Javkhlantugs
Affiliation:
Center for Nanoscience and Nanotechnology & Department of Chemical Technology, School of Chemistry and Chemical Engineering, National University of Mongolia, Main building, University street 1, Ulaanbaatar 14201, Mongolia Department of Advanced Materials Science, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya ku, Yokohama 240-8501, Japan
Janlav Munkhtsetseg
Affiliation:
Department of Biochemistry and Laboratory, School of Biomedicine, Health Sciences University of Mongolia, Zorigiin gudamj, Ulaanbaatar 14210, Mongolia
Chimed Ganzorig
Affiliation:
Center for Nanoscience and Nanotechnology & Department of Chemical Technology, School of Chemistry and Chemical Engineering, National University of Mongolia, Main building, University street 1, Ulaanbaatar 14201, Mongolia
Kazuyoshi Ueda
Affiliation:
Department of Advanced Materials Science, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya ku, Yokohama 240-8501, Japan
Get access

Abstract

The peptide-DNA complex was investigated by using molecular dynamics simulation to analyze the transfection efficiency of cationic amphipathic peptide. Previously, the cationic peptide, LFampinB, with positively charged amino acid residues of Lysines was used to investigate the orientation and interaction energies for entering the cell though disruption of the endosomal membrane. The same interactions were obtained for N-terminus of the LFampinB peptide with membrane and with plasmid DNA. The N-terminus of LFampinB can bind at minor groove of DNA to make complexation of the peptide with DNA.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

van der Kraan, M. I. A., Groeink, J., Nazmi, K., Veerman, E. C. I., Bolscher, J. G. M., Nieuw Amerongen, A. V., Peptides 25, 177 (2004).CrossRefGoogle Scholar
Tsutsumi, A., Javkhlantugs, N., Kira, A., Umeyama, M., Kawamura, I., Nishimura, K., Ueda, K., and Naito, A., Biophys. J. 103, 1735, (2012).CrossRefGoogle Scholar
Pauling, B. L., Corey, R. B., Branson, H. R., Proc. Natl. Acad. Sci. USA 37, 205 (1951).CrossRefGoogle Scholar
Eisenberg, D., Proc. Natl. Acad. Sci. USA 100, 11207 (2003)CrossRefGoogle Scholar
Javkhlantugs, N., Naito, A., and Ueda, K., Biophys. J. 101, 1212, (2010).CrossRefGoogle Scholar
Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., Karplus, M., J. Comp. Chem. 4, 187 (1983).CrossRefGoogle Scholar
Mackerell, A. D., Bashford, D., Bellott, D., Dunbrack, R. L., Evanseck, R. L., Field, M. J., Fischer, S., Gao, J., Guo, H., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, I. W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M., J. Phys. Chem. B. 102, 3586 (1998).CrossRefGoogle Scholar
An, W. and Wensink, P. C., EMBO 14, 1221 (1995).CrossRefGoogle Scholar
Narayana, N. and Weiss, M. A., J. Mol. Biol. 385, 469 (2009).CrossRefGoogle Scholar
Javkhlantugs, N., Bayar, H., Ganzorig, C., and Ueda, K., Int. J. Nanomedicine, in press (2013).Google Scholar
Watanabe, H. I., Kamihira, M., Javkhlantugs, N., Inoue, R., Itoh, Y., Endo, H., Tuzi, S., Saito, H., Ueda, K., and Naito, A., Phys. Chem. Chem. Phys. in press (2013)Google Scholar
Ryckaert, J. P., Cicotti, G., Berendsen, H. J. C., J. Comput. Phys. 23, 327 (1977).CrossRefGoogle Scholar
Darden, T., York, D. and Pedersen, L., J. Chem. Phys., 1993, 98, 1008910092.CrossRefGoogle Scholar
Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H. and Pedersen, L. G., J. Chem. Phys., 1995, 103, 85778593.CrossRefGoogle Scholar
Nose, S., J. Chem. Phys. 81, 511 (1984).CrossRefGoogle Scholar
Hoover, W. G., Phys. Rev. A. 31, 1695 (1985).CrossRefGoogle Scholar
Humphrey, W. A., Dalke, A., Schulten, K., J. Mol. Graphics 14, 33 (1996).CrossRefGoogle Scholar