Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-30T21:58:41.201Z Has data issue: false hasContentIssue false

Domain Structure and Colossal Magnetoresistance of La1−xSrxCoO3 and La1−xCaxMnO3

Published online by Cambridge University Press:  15 February 2011

Z. L. Wang
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
Jiming Zhang
Affiliation:
Advanced Technology Materials, Inc., 7 Commerce Drive, Danbury, CT 06810
Y. Berta
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
Get access

Abstract

La1−xSrxCoO3 (LSCO) and La1−xCaxMnO3 (LCMO) are a class of magnetic oxides exhibiting the colossal magnetoresistance (CMR) effect. However, the CMR ratio of LSCO is much lower than that of LCMO. Microstructure studies were carried out to understand this difference. In La0.5Sr0.5CoO3 (LSCO), an ordered, anisotropic perovskite-type structure n-LSCO was observed. The ordered structure has a tetragonal cell with a La-Co-Sr-Co- [001] layered atom distribution along the c-axis. This new structure is intrinsic for the LSCO system and is a direct result of the lattice substitution between La and Sr. The entire film is composed of [001], [010] and [100] anisotropic domains with sizes on the order of 30–200 nm. The La0 7Ca0.3MnO3 (LCMO) film, however, does not exhibit a domain structure. It is concluded that the domain structure may have negative effect on the CMR ratio.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Chahara, K., Ohno, T., Kasai, M., Kozono, Y., Appl. Phys. Lett. 63, 1990 (1993).Google Scholar
[2] Helmolt, R. von, Wecker, J., Holzapfel, B., Schultz, L. and Samwer, K., Phys. Rev. Lett. 71, 2331 (1994).Google Scholar
[3] Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R. A., Ramech, R., Chen, L. H., Science, 264, 413 (1994).Google Scholar
[4] Ju, H. L., Kwon, C., Greenne, R. L., Venkatessan, T., Appl. Phys. Lett., 65, 2108 (1994).Google Scholar
[5] Li, Y. Q., Zhang, J., Pombrik, S., DiMascio, S., Stevens, W., Yan, Y. F. and Ong, N. P., J. Mat. Res., in press (1995).Google Scholar
[6] Briceno, G., Xiang, X.-D., Chang, H., Sun, X., Schultz, P. G., Science, 270, 273 (1995); X.-D. Xiang et al., Science, 268, 1738 (1995).Google Scholar
[7] Zhang, J., Cui, G. J., Gordon, D., Buskirs, P. Van, Steinbeck, J., in Ferroelectric Thin Films III, Proc. of Materials Research Soc., (Materials Research Society, Pittsburg) Vol.310, 249 (1993).Google Scholar
[8] Zhang, J., Gardiner, R. A., Kirlin, P. S., Boerstler, R. W. and Steinbeck, J., Appl. Phys. Lett. 61, 2884 (1992).Google Scholar
[9] Jonker, G. H. and Santen, J. H. van, Physica 19, 120 (1953).Google Scholar
[10] Zener, C., Phys. Rev. 2, 403 (1951); G.A. Prinz, Physics Today, April, 58 (1995).Google Scholar
[11] Anderson, P. W. and Hasegawa, H., Phys. Rev. 100, 675 (1955).Google Scholar
[12] Gennes, P. G. de, Phys. Rev. 118, 141 (1960).Google Scholar
[13] Wang, Z. L. and Zhang, J., Philos. Maga. A, in press (1995).Google Scholar
[14] Wang, Z. L. and Zhang, J., proc. Microscopy and Microanalysis 1995 Bailey, G. W., Ellisman, M. H., Hennigar, R. A. and Zaluzec, N. J. eds., Jone and Begell Pub., pp. 450.Google Scholar
[15] Yakel, H. L., Acta Cryst. 8, 394 (1955).Google Scholar