Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T05:11:56.107Z Has data issue: false hasContentIssue false

Domain Structure of Poled Ferroelectric (111) PZT (PbZr0.25Ti0.75O3) Films

Published online by Cambridge University Press:  10 February 2011

C.E. Zybill
Affiliation:
Physik Department E16, Technische Universität Minchen, James Franck Str. 1, 85747 Garching, Germany, zybill@ph.tum.de
H. Boubekeur
Affiliation:
Physik Department E16, Technische Universitat Minchen, James Franck Str. 1, 85747 Garching, Germany
P. Radojkovic
Affiliation:
Physik Department E16, Technische Universitat Minchen, James Franck Str. 1, 85747 Garching, Germany
M. Schwartzkopff
Affiliation:
Physik Department E16, Technische Universitat Minchen, James Franck Str. 1, 85747 Garching, Germany
E. Hartmann
Affiliation:
Physik Department E16, Technische Universitat Minchen, James Franck Str. 1, 85747 Garching, Germany
F. Koch
Affiliation:
Physik Department E16, Technische Universitat Minchen, James Franck Str. 1, 85747 Garching, Germany
G. Groos
Affiliation:
Walter Schottky Institut, Am Coulombwall 1, 85747 Garching
B. Rezek
Affiliation:
Walter Schottky Institut, Am Coulombwall 1, 85747 Garching
R. Bruchhaus
Affiliation:
Siemens AG, ZT MF2, Otto-Hahn-Ring 6, 81739 München
W. Wersing
Affiliation:
Siemens AG, ZT MF2, Otto-Hahn-Ring 6, 81739 München
Get access

Abstract

Films of (111) oriented self-polarized, tetragonal ferroelectric PZT crystallites on (100)Si/SiO2(250 nm)/(111) Pt (50 nm) have been investigated by STM, AFM and SAXS. After metallization of the PZT surface with a Cr-Ni film (5.2 nm thickness) or a Ti film (5.0 nm thickness), single domains were visible on the metal surface by STM measurements as parallel stripes. The lamellar stripes had a width of 10.5 – 25.2 nm and a vertical corrugation of 0.9 – 3.0 nm at the intersection line of the domain walls with the crystallite surface.

High resolution AFM with EBD supertips on unmetallized samples revealed areas of typically several µm in diameter showing crystallites with perfectly parallel aligned (90°) domains of 10 - 15 nm width with their boundaries along {110} planes. Single domain walls were visible as a trace on the surface by a negative corrugation effect of 1.0 – 1.5 nm. This corrugation is assumed to be a reflection of the strain distribution normal to the surface. Furthermore, coherency (oxygen) defects are accumulated at the interface between 90 ° twin domains.

SAXS investigations allowed to estimate a mean value of domain thickness of 17.5 nm. Exertion of stress (5.1 104Nm−2) to the film resulted in an increase of domain width by ∼1%.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scott, J.F., Araujo, C.A. Paz de, Science 246, 1400 (1989).Google Scholar
2. Auciello, O., Integr. Ferroelectr. 15, 211 (1997).Google Scholar
3. Gruverman, A., Auciello, O., Ramesh, R., Tokumoto, H., Nanotechnology 8, A38 (1997).Google Scholar
4. Gruverman, A., Auciello, O., Tokumoto, H., Appl. Phys. Lett. 69, 3191 (1996).Google Scholar
5. Hidaka, T., Maruyama, T., Saitoh, M., Mikoshiba, N., Shimizu, M., Shiosaki, T., Wills, L.A., Hiskes, R., Dicarolis, S.A., Amano, J., Appl. Phys. Lett. 68, 2358 (1996).Google Scholar
6. Tsunekawa, S., Fukuda, T., Ozaki, T., Yoneda, Y., Terauchi, H., Appl. Phys. Lett. 71, 1486 (1997).Google Scholar
7. Auciello, O., Gruverman, A., Tokumoto, H., Prakash, S.A., Aggarwal, S., Ramesh, R., MRS Bulletin 1998,23, 34.Google Scholar
8. Franke, K., Ferroelectric Letters 19, 35 (1995).Google Scholar
9. Franke, K., Weihnacht, M., Ferroelectric Letters 19, 25 (1995).Google Scholar
10. Franke, K., Besold, J., Haessler, W., Seegebarth, C., Surface Science Letters 302, L283 (1994).Google Scholar
11. Streiffer, S.K., Parker, C.B., Romanov, A.E., Lefevre, M.J., Zhao, L., Speck, J.S., Pompe, W., Foster, C.M., Bai, G.R., J. Appl. Phys. 83, 2742 (1998).Google Scholar
12. Mitsui, T. Furuichi, J., Phys. Rev. 90, 193 (1953).Google Scholar
13. Bruchhaus, R., Huber, H., Pitzer, D., Wersing, W., Ferroelectrics 127, 137 (1992).Google Scholar
14. The electrical characterization of the ferroelectric material yielded a pyrocoefficient of 2.01 × 10−4cm−2K−1, a loss factor tan δ = 0.015 and a dielectricity constant ε = 324 (10 kHz, 0.1 V).Google Scholar
15. Lines, M.E., Glass, A.M., Principles and Applications of Ferroelectric and Related Materials, Oxford Science Publications, Oxford University Press (1977).Google Scholar
16. Murarka, S.P., Metallization - Theory and Practice for VLSI and ULSI, Butterworth_Heinemann 1993.Google Scholar
17. Speck, J.S., Daykin, A.C., Seifert, A., Romanov, A., Pompe, W., J. Appl. Phys. 78, 1696 (1995).Google Scholar
17. Romanov, A.E., Vojta, A., Pompe, W., Lefevre, M.J., Speck, J.S., Physica Stat. Solidi, 1998, submitted.Google Scholar
19. Romanov, A.E, Lefevre, M.J., Speck, J.S., Pompe, W., Streiffer, S.K., Foster, C.M., J. Appl. Phys. 83, 2754 (1998).Google Scholar
20. Romanov, A.E., Pompe, W., Speck, J.S., J. Appl. Phys. 79, 4037 (1996).Google Scholar
21. Fousek, J., Janovek, V., J. Appl. Phys. 40, 135 (1969).Google Scholar
22. Yamamoto, T., Kawano, K., Saito, M., Omika, S., Jpn. J. Appl. Phys. 36, 6145 (1997).Google Scholar
23. Scott, J.F., Ferroelectrics Review 1,1 (1998).Google Scholar
24. Ross, F.M., Kilaas, R., Snoeck, E., Hytch, M., Thorel, A., Normand, L., Mat. Res. Soc. Symp. Vol. 466, 245 (1997).Google Scholar
25. Scott, J.F., Ross, F.M., Araujo, C.A. Paz de, Scott, M.C., Huffmann, M., MRS Bulletin 21, 33 (1996).Google Scholar