Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T13:51:36.998Z Has data issue: false hasContentIssue false

The DR-A in-situ diffusion experiment at Mont Terri: Effects of changing salinity on diffusion and retention properties.

Published online by Cambridge University Press:  30 June 2014

Josep M. Soler
Affiliation:
IDAEA-CSIC, Barcelona, Catalonia, Spain.
Olivier X. Leupin
Affiliation:
NAGRA, Wettingen, Switzerland.
Thomas Gimmi
Affiliation:
Paul Scherrer Institut, Villigen, Switzerland. University of Bern, Switzerland.
Luc R. Van Loon
Affiliation:
Paul Scherrer Institut, Villigen, Switzerland.
Get access

Abstract

In the new DR-A in-situ diffusion experiment at Mont Terri, a perturbation (replacement of the initial synthetic porewater in the borehole with a high-salinity solution) has been induced to study the effects on solute transport and retention, and more importantly, to test the predictive capability of reactive transport codes. Reactive transport modeling is being performed by different teams (IDAEA-CSIC, PSI, Univ. Bern, Univ. British Columbia, Lawrence Berkeley Natl. Lab.). Initial modeling results using the CrunchFlow code and focusing on Cs+ behavior are reported here.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Palut, J.-M., Montarnal, Ph., Gautschi, A., Tevissen, E. and Mouche, E., J. Contam. Hydrol. 61, 203 (2003).CrossRefGoogle Scholar
Tevissen, E. and Soler, J.M., Mont Terri Project. DI Experiment. Synthesis Report, (Mont Terri Technical Report TR 2001-05, St-Ursanne, 2003), p. 55.Google Scholar
Wersin, P., Van Loon, L.R., Soler, J.M., Yllera, A., Eikenberg, J., Gimmi, Th., Hernán, P. and Boisson, J.-Y., Appl. Clay Sci. 26, 123 (2004).10.1016/j.clay.2003.09.007CrossRefGoogle Scholar
Van Loon, L.R., Wersin, P., Soler, J.M., Eikenberg, J., Gimmi, Th., Hernán, P., Dewonck, S. and Matray, J.-M., Radiochim. Acta 92, 757 (2004).CrossRefGoogle Scholar
Wersin, P., Soler, J.M., Van Loon, L., Eikenberg, J., Baeyens, B., Grolimund, D., Gimmi, T. and Dewonck, S., Appl. Geochem. 23, 678 (2008).CrossRefGoogle Scholar
Soler, J.M., Wersin, P. and Leupin, O.X., Appl. Geochem. 33, 191 (2013).CrossRefGoogle Scholar
Van Loon, L.R. and Soler, J.M., Diffusion of HTO, 36Cl-, 125I- and 22Na+ in Opalinus Clay: Effect of confining pressure, sample orientation, sample depth and temperature, (Nagra Technical Report NTB-03-07, Wettingen, 2003), p. 119.Google Scholar
Steefel, C.I., CrunchFlow. Software for Modeling Multicomponent Reactive Flow and Transport. User’s Manual, (Lawrence Berkeley National Laboratory, Berkeley, 2009), p. 91.Google Scholar
Van Loon, L.R., Baeyens, B. and Bradbury, M.H., Appl. Geochem. 24, 999 (2009).CrossRefGoogle Scholar
Li, Y.-H. and Gregory, S., Geochim. Cosmochim. Acta 38, 703 (1974).Google Scholar
Bradbury, M.H. and Baeyens, B., J. Contam. Hydrol. 42, 141 (2000).CrossRefGoogle Scholar
Jakob, A., Pfingsten, W. and Van Loon, L., Geochim. Cosmochim. Acta 73, 2441 (2009).10.1016/j.gca.2009.01.028CrossRefGoogle Scholar
Pearson, F.J., Arcos, D., Bath, A., Boisson, J.-Y., Fernández, A.M., Gäbler, H.-E., Gaucher, E., Gautschi, A., Griffault, L., Hernán, P. and Waber, H.N., Mont Terri Project – Geochemistry of Water in the Opalinus Clay Formation at the Mont Terri Rock Laboratory, (Reports of the FOWG, Geology Series, No. 5, Bern, 2003), p. 141.Google Scholar