Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-18T23:04:20.136Z Has data issue: false hasContentIssue false

Dynamics and Morphology of Cracks in Silicon Nitride Films: A Molecular Dynamics Study on Parallel Computers

Published online by Cambridge University Press:  10 February 2011

Aiichiro Nakano
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Computer Science Department of Physics and Astronomy Louisiana State University, Baton Rouge, LA 70803
Rajiv K. Kalia
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Computer Science Department of Physics and Astronomy Louisiana State University, Baton Rouge, LA 70803
Priya Vashishta
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Computer Science Department of Physics and Astronomy Louisiana State University, Baton Rouge, LA 70803
Get access

Abstract

Multiresolution molecular dynamics approach on parallel computers has been used to investigate fracture in ceramic materials. In microporous silica, critical behavior at fracture is analyzed in terms of pore percolation and kinetic roughening of fracture surfaces. Crack propagation in amorphous silicon nitride films is investigated, and a correlation between the speed of crack propagation and the morphology of fracture surfaces is observed. In crystalline silicon nitride films, temperature-assisted void formation in front of a crack tip slows down crack propagation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fricke, J., J. Non-Cryst. Solids 121, 188 (1990).Google Scholar
2. Mukerji, J., in Chemistry of Advanced Materials, ed. Rao, C. N. R., Blackwell (Oxford, 1993).Google Scholar
3. Mandelbrot, B. B., Passoja, D. E., and Paullay, A. J., Nature 308, 721 (1984).Google Scholar
4. Bouchaud, E., Lapasset, G., and Planes, J., Europhys. Lett. 13, 73 (1990).Google Scholar
5. Måløy, K. J., Hansen, A., Hinrichsen, E. L., and Roux, S., Phys. Rev. Lett. 68, 213 (1992); ibid. 71, 205 (1993).Google Scholar
6. Milman, V. Y., Blumenfeld, R., Stelmashenko, N. A., and Ball, R. C., Phys. Rev. Lett. 71, 204 (1993).Google Scholar
7. Nakano, A., Kalia, R. K., and Vashishta, P., Phys. Rev. Lett. 73, 2336 (1994).Google Scholar
8. Abraham, F. F., Brodbeck, D., Rafey, R. A., and Rudge, W. E., Phys. Rev. Lett. 73, 272 (1994).Google Scholar
9. Kalia, R. K., de Leeuw, S. W., Nakano, A., Greenwell, D. L., and Vashishta, P., Comput. Phys. Commun. 74, 316 (1993); A. Nakano, P. Vashishta, and R. K. Kalia, 77, 302 (1993); A. Nakano, R. K. Kalia, and P. Vashishta, 83, 197 (1994).Google Scholar
10. Nakano, A., Kalia, R. K., and Vashishta, P., Phys. Rev. Lett. 75, 3138 (1995).Google Scholar
11. Vashishta, P., Kalia, R. K., and Ebbsjö, I., Phys. Rev. Lett. 75, 858 (1995); C.-K. Loong, P. Vashishta, R. K. Kalia, and I. Ebbsjö, Europhys. Lett. 31, 201 (1995).Google Scholar
12. Cartz, L. and Jorgensen, J. D., J. Appl. Phys. 52, 236 (1981).Google Scholar
13. Mukaseev, A. A., Gribkov, V. N., Shchetanov, B. V., Isaikin, A. S., and Silaev, V. A., Poroshk. Metall. 12, 97 (1972).Google Scholar
14. Fineberg, J., Gross, S. P., Marder, M., and Swinney, H. L., Phys. Rev. Lett. 67, 457 (1991).Google Scholar
15. Bouchaud, E. and Navéos, S., J. Phys. I (France) 5, 547 (1995).Google Scholar
16. Bouchard, J.-P., Bouchard, E., Lapasset, G., and Plan~s, J., Phys. Rev. Lett. 71, 2240 (1993)Google Scholar
17. Etras, D. and Karder, M., Phys. Rev. Lett. 69, 889 (1992).Google Scholar
18. Rice, J. R. and Thomson, R., Philos. Mag. 29, 73 (1974).Google Scholar
19. Zhou, S. J., Carlsson, A. E., and Thomson, R., Phys. Rev. Lett. 72, 852 (1994).Google Scholar
20. Khantha, M., Pope, D. P., and Vitek, V., Phys. Rev. Lett. 73, 684 (1994).Google Scholar
21. Rundle, J. B. and Klein, W., Phys. Rev. Lett. 63, 171 (1989).Google Scholar
22. Selinger, R. L. B., Wang, Z.-G., Gelbart, W. M., and Ben-Shaul, A., Phys. Rev. A 43, 4396 (1991).Google Scholar
23. Golubovic, L. and Feng, S., Phys. Rev. A 43, 5223 (1991).Google Scholar
24. Lawn, B., Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1993).Google Scholar
25. Bouchaud, E. and Bouchaud, J.-P., Phys. Rev. B 50, 17752 (1994).Google Scholar