No CrossRef data available.
Published online by Cambridge University Press: 25 February 2011
Using embedded atom potentials fit to both bulk and surface properties, we explore the submonolayer vapor deposition of Au and Pt onto reconstructed (100) surfaces with the MD code DAMSEL. The surface geometries are determined by computational annealing over .6 ns. Surface reconstruction has a strong influence on the effects of adatoms. In Au and Pt the deposited atoms are absorbed into the surface and surface structures form by atomic replacement sequences and collective motion over the surface and substrate. On Au the reconstructed corrugated surface evolves into one characterized by two-dimensional mounds as coverage is increased. On reconstructed Pt, which exhibits alternately quasihexagonal and bulk-like regions, adatoms initially form strings above the bulk-like regions parallel to the (110] corrugation rows. At about .5 monolayer coverage the quasihexagonal structure of the top substrate layer transitions to a bulk-like structure in both Au and Pt