Article contents
Effect Co- and Sc- Doping on the Functional Properties of Nanocrystalline Powders and Thin Films of ZnO
Published online by Cambridge University Press: 01 February 2011
Abstract
A modified sol-gel approach to synthesize well-crystallized pure and doped ZnO nanocrystalline powders and thin films has been developed. The attachment of ZnO films onto quartz substrates was optimized by selecting suitable organic agents to control the viscosity of precursor solutions. Thermo-gravimetric analyses on pure and doped precursor solids suggested the need for annealing temperatures above 400 °C to assure the effective crystallization of the oxide phase. The average crystallite size in powders and thin films varied from 25.9 nm to 33.7 nm when pure ZnO films were annealed for 1 hour in the 450 °C - 600 °C range. The average crystallite size ranged between 30 nm and 33 nm in the presence of cobalt (5 at%) and decreased from 33.7 nm to 21.1 nm when scandium ions was used in the 0.0 at% - 10 at% range under similar annealing conditions. UV-vis measurements showed a sharp exciton peak centered at 370 nm whereas photoluminescence analyses detected the characteristic ZnO emission band in the UV region. No photoluminescence band in the visible region, usually attributed to defect states in ZnO, was observed in our measurements. Magnetization measurements revealed a weak ferromagnetism in Co-doped ZnO whereas a clear diamagnetism was evident in the Sc-doped sample.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2010
References
- 1
- Cited by