Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-29T13:11:17.981Z Has data issue: false hasContentIssue false

Effect of Americium and Simulated Fission Products Addition on Oxygen Potential of Uranium-Plutonium Mixed Oxide Fuels

Published online by Cambridge University Press:  31 January 2011

Kosuke Tanaka
Affiliation:
tanaka.kosuke@jaea.go.jp, Japan Atomic Energy Agency, Ibaraki, Japan
Masahiko Osaka
Affiliation:
ohsaka.masahiko@jaea.go.jp, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki, 311-1393, Japan
Ken Kurosaki
Affiliation:
kurosaki@see.eng.osaka-u.ac.jp, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Japan
Hiroaki Muta
Affiliation:
muta@see.eng.osaka-u.ac.jp, Osaka University, Suita, Japan
Masayoshi Uno
Affiliation:
uno@u-fukui.ac.jp, University of Fukui, Fukui, Japan
Shinsuke Yamanaka
Affiliation:
yamanaka@see.eng.osaka-u.ac.jp, Osaka University, Suita, Japan
Get access

Abstract

The oxygen potentials at 1273 K of mixed oxide (MOX) fuels with Am and 26 kinds of fission product elements (FPs), simulating low-decontaminated MOX fuel and high burn-up of up to 250 GWd/t, have been measured by using thermogravimetric analysis (TGA). The oxygen potentials for simulated low-decontaminated MOX fuels were higher than the fuels without FPs and increased with increasing simulated burn-up.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Namekawa, T. et al. , Proc. Int. Conf. GLOBAL 2005, Tsukuba, Japan, Oct. 9-13, 2005, paper No. 424.Google Scholar
2. Kleykamp, H. J. Nucl. Mater., 131, 229(1985).Google Scholar
3.D. Olander, R. Fundamental Aspects of Nuclear Reactor Fuel Elements, TID-26711-P1, 1970.Google Scholar
4. Yuda, R. K., and Une, , J. Nucl. Mater. 178, 195(1991).Google Scholar
5. Miwa, S. et al. , Recent Advances in Actinide Science, Manchester, July 4-8, 2005, eds. May, I. Bryan, N. D. and Alvarez, R. RSC Publishing: pp. 400-402, 2006.Google Scholar
6. Chikalla, T. D. and Eyring, L. Inorg, J.. Nucl. Chem. 29, 2281(1967).Google Scholar
7. Bartscher, W. and Sari, C. J. Nucl. Mater. 118, 220(1983).Google Scholar
8. Osaka, M. et al. , J. Alloys Com., 397, 110(2005).Google Scholar
9. Osaka, M. et al. , J. Alloys Com., 428, 355(2007).Google Scholar
10. Kato, M. et al. , J. Nucl. Mater., 385, 419(2009).Google Scholar
11. Une, K. and Oguma, M. J. Nucl. Sci. Technol., 20, 844(1983)Google Scholar
12. Woodley, R.E. J. Nucl. Mater., 74, 290(1978)Google Scholar
13. Yoshimochi, H. et al. , J. Nucl. Sci. Technol. 41, 850(2004).Google Scholar
14. Lucta, P.G. et al. , J. Nucl. Mater., 188, 198(1992).Google Scholar
15. Une, K. and Oguma, M. J. Nucl. Mater., 131, 88(1985).Google Scholar
16. Ishimoto, S. et al. , J. Nucl. Sci. Technol., 31, 796(1994).Google Scholar