Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-30T19:44:20.915Z Has data issue: false hasContentIssue false

Effect of a-SiC:H Film Composition on the Performance of Large Area Optical Sensors

Published online by Cambridge University Press:  17 March 2011

P. Louro
Affiliation:
Electronics and Communications Dept., ISEL, R. Conselheiro Emídio Navarro, P 1949-014 Lisboa, Portugal
Yu. Vygranenko
Affiliation:
Electronics and Communications Dept., ISEL, R. Conselheiro Emídio Navarro, P 1949-014 Lisboa, Portugal
M. Fernandes
Affiliation:
Electronics and Communications Dept., ISEL, R. Conselheiro Emídio Navarro, P 1949-014 Lisboa, Portugal
M. Vieira
Affiliation:
Electronics and Communications Dept., ISEL, R. Conselheiro Emídio Navarro, P 1949-014 Lisboa, Portugal Email: mv@isel.pt
M. Schubert
Affiliation:
Institut fur Physikalische Elektronik, Universitat Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Get access

Abstract

A series of large area single layers and heterojunction cells in the assembly glass/ZnO:Al/p (SixC1-x:H)/i (Si:H)/n (SixC1-x:H)/Al (0<x<1) were produced by PE-CVD at low temperature. Junction properties, carrier transport and photogeneration are investigated from dark and illuminated current-voltage and capacitance-voltage characteristics. For the heterojunction cells Atypical J-V characteristics under different illumination conditions are observed leading to poor fill factors. High serial resistances around 106 Ω are also measured. These experimental results were used as a basis for the numerical simulation of the energy band diagram, and the electrical field distribution of the whole structures. Further comparison with the sensor performance gave satisfactory agreement.

Results show that the conduction band offset is the most limiting parameter for the optimal collection of the photogenerated carriers. As the optical gap increases and the conductivity of the doped layers decreases, the transport mechanism changes from a drift to a diffusion-limited process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vieira, M., Fernandes, M., Martins, J., Louro, P., Maçarico, A., Schwarz, R., and Schubert, M.. In Amorphous and Heterogeneous Silicon Thin Films-2000, Mat. Res. Soc. Symp. Proc., S. Francisco (USA), 2000.Google Scholar
2. Vieira, M., Fernandes, M., Martins, J., Louro, P., Maçarico, A., Schwarz, R., and Schubert, M.. In Amorphous and Heterogeneous Silicon Thin Films-2000, Mat. Res. Soc. Symp. Proc., S. Francisco (USA), 2000.Google Scholar
3. Bucker, H. K., Burkey, B. C., Lubberts, G. and Wolf, E. L., Appl. Phys. Lett. 23, 617 (1973).Google Scholar
4. Koch, C., Ito, M., Schubert, M., and Werner, J. H., Mat. Res. Soc. Sym p. Proc, 575 (1999) 749.Google Scholar
5. Vancek, M., Kocka, J., Strichlik, J., Kosiccek, Z., Stika, O. and Triska, A., Sol. Energy Mater, 8, (19839 411.Google Scholar
6. Blood, P., Orton, J. W., The Electrical Characterization of Semiconductors: Majority Carriers and Electron State (Techniques of Physics, vol. 14), ASIN: 0125286279.Google Scholar
7. Sze, S. M., Physics of the Semiconductor Devices, 2nd Edition, John Wiley & Sons, New York, 1981.Google Scholar
8. Hegedus, S. S., Progress in Photovoltaics: Research and Applications, 5 (1997) 151.Google Scholar
9. McElheny, P. J., Arch, J. K., Lin, H. S., Fonash, S. J., J. Appl. Phys., 64 (1988) 1254.Google Scholar