Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T10:01:49.546Z Has data issue: false hasContentIssue false

Effect of Atomic Structure at the Epitaxial CaF2 /Si(111) Interface on Electrical Properties

Published online by Cambridge University Press:  26 February 2011

J.L. Batstone
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Julia M. Phillips
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
E.C. Hunke
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

High resolution electron microscopy has been used to determine the atomic structure at the epitaxial CaF2 /Si(111) interface before and after a rapid thermal anneal. Direct Ca-Si bonding at the interface, with 8-fold coordinated Ca atoms is observed in as-grown layers. Fluorine is preferentially removed from the interface during a rapid thermal anneal leaving 5-fold coordinated Ca atoms. A dramatic improvement in the electrical properties of the interface is observed after annealing. The measured interface state density is reduced from ≳1013 cm−2 to ≲1011cm−2. This has been correlated with the removal of F from the interface. No evidence for direct F-Si bonding is observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Permanent addresss: Memphis State University, Memphis, TN

References

REFERENCES

[1] See for example, Phillips, J.M., Mat. Res. Soc. Symp. Proc. 71, 97, (1986); H. Ishiwara, T. Asano, H.C. Lee, Y. Kuriyama, K. Seki and S. Furukawa, Mat. Res. Soc. Symp. Proc. 67, 105, (1986); L.J. Schowalter and R.W. Fathauer, J. Vac. Sci. Tech. A 4, 1026, (1986)Google Scholar
[2]Smith, T.P. III, Phillips, J.M., Augustyniak, W.M. and Stiles, P.J., App. Phys. Lett. 45, 907, (1984)Google Scholar
[3]Phillips, J.M., Pfeiffer, L.N., Joy, D.C., Smith, T.P. III, Gibson, J.M., Augustyniak, W.M. and West, K.W., J.Electrochem. Soc. 188, 224, (1986)Google Scholar
[4] AG Heatpulse 210, AG Associates, Inc., Palo Alto, CA 94303Google Scholar
[5]Pfeiffer, L.N., Phillips, J.M., Smith, T.P. III, Augustyniak, W.M. and West, K.W., App. Phys. Lett. 46, 947, (1985)Google Scholar
[6]Fathauer, R.W., Schowalter, L.J., Lewis, N. and Hall, E.L., Mat. Res. Soc. Symp. Proc. 54, 313, (1986)Google Scholar
[7]Bahnck, D., Batstone, J.L. and Phillips, J.M., to be publishedGoogle Scholar
[8]Ponce, F.A., Anderson, G.B., O'Keefe, M.A. and Schowalter, L.J., J. Vac. Sci. Tech. B 4, 1121, (1986), and F.A. Ponce, M.A.O'Keefe and G.B. Anderson, Presented at Spring MRS meeting, 1986.Google Scholar
[9]Cowley, J.M. and Moodie, A.F., Acta Cryst. 10, 609, (1957)Google Scholar
[10]Cherns, D., Anstis, G.R., Hutchison, J.L. and Spence, J.C.H., Phil. Mag. A 46, 849, (1982)Google Scholar
[11]Gibson, J.M., Bean, J.C., Poate, J.M. and Tung, R.T., App. Phys. Lett. 9, 818, (1982)Google Scholar
[12]Zegenhagen, J., Huang, K.G., Hunt, B.D. and Schowalter, L.J., App. Phys. Lett. 51, 1176, (1987)Google Scholar
[13] A description of the coincidence site lattice can be found in “Introduction to Materials Science”, Guy, A.G. (McGraw-Hill, Inc, 1971)Google Scholar
[14]Phillips, J.M., Manger, M.L., Pfeiffer, L.N., Joy, D.C., Smith, T.P. III, Augustyniak, W.M. and West, K.W., Mat. Res. Soc. Symp. Proc. 53, 155, (1986)Google Scholar
[15]Schowalter, L.J. and Fathauer, R.W., Proc. 1st Int. Symp. on Si MBE, Vol 85–7, J.C., Bean, Ed.(Electrochem. Soc. Press, Pennington, NJ, 1985) p. 3 1 1Google Scholar
[16]Olmstead, M.A., Uhrberg, R.I.G., Bringans, R.D. and Bachrach, R.Z., Phys. Rev. B 35, 7526, (1987)Google Scholar
[17]Himpsel, F.J., Karlsson, U.O., Morar, J.F., Reiger, D. and Yarmoff, J.A., Phys. Rev. Lett. 56, 1497, (1986)Google Scholar
[18]Olmstead, M.A., Uhrberg, R.I.G., Bringans, R.D. and Bachrach, R.Z., J. Vac. Sci. Technol. B 4, 1123, (1986)Google Scholar