Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T11:07:43.805Z Has data issue: false hasContentIssue false

Effect of Cap-Layers on Interlayer Exchange Coupling

Published online by Cambridge University Press:  15 February 2011

J. Kudrnovský
Affiliation:
Institute of Physics AS CR, CZ-180 40 Praha 8, Czech Republic Center for Materials Science, Technical University, A-1060 Vienna, Austria
V. Drchal
Affiliation:
Institute of Physics AS CR, CZ-180 40 Praha 8, Czech Republic Center for Materials Science, Technical University, A-1060 Vienna, Austria
P. Bruno
Affiliation:
Institut d'Électronique Fondamentale, Université Paris-Sud, F-91405 Orsay, France
R. Coehoorn
Affiliation:
Philips Research Laboratories, NL-5656 AA Eindhoven, The Netherlands
J.J. De Vries
Affiliation:
Philips Research Laboratories, NL-5656 AA Eindhoven, The Netherlands Eindhoven University of Technology, NL-5600 MB Eindhoven, The Netherlands
K. Wildberger
Affiliation:
Forschungszentrum Jülich, IFF, D-52425 Jiilich, Germany
P.H. Dederichs
Affiliation:
Forschungszentrum Jülich, IFF, D-52425 Jiilich, Germany
P. Weinberger
Affiliation:
Center for Materials Science, Technical University, A-1060 Vienna, Austria
Get access

Abstract

The effect of non-magnetic cap-layers on the amplitudes and the phases of the oscillations of interlayer exchange coupling (IEC) is studied theoretically on ab initio level. We employ a spin-polarized surface Green function technique within the tight-binding linear muffin-tin orbital method and the Lloyd formulation of the IEC. Application is made to Co/Cu/Co(001) trilayers with Cu-cap layers interfacing vacuum through the dipole barrier.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a recent review of the theory and experiment see articles of Parkin, S.S.S., Hathaway, K.B., and Fert, A. and Bruno, P., in Ultrathin Magnetic Structures II, eds. Heinrich, B. and Bland, J.A.C. (Springer, Berlin, 1994).Google Scholar
2. Bruno, P., Phys. Rev. B 52, 411 (1995).Google Scholar
3. Okuno, S.N. and Inomata, K., J. Phys. Soc. Jpn. 64, 3631 (1995).Google Scholar
4. de Vries, J.J., Schedularo, A.A., Jungblut, R., Bloemen, P.J.H., Reinders, A., Kohlhepp, J., Coehoorn, R., and de Jonge, W.J.M., Phys. Rev. Lett. 75, 4306 (1995).Google Scholar
5. Bonough, A., Beauvillain, P., Bruno, P., Chappert, C., Mégy, R., and Veillet, P., Europhys. Lett. 33, 315 (1996).Google Scholar
6. Bruno, P., J. Magn. Magn. Mater, (in print).Google Scholar
7. Kudrnovský, J., Drchal, V., Turek, I., and Weinberger, P., Phys. Rev. B 50, 16105 (1994);Google Scholar
Drchal, V., Kudrnovský, J., Turek, I., and Weinberger, P., Phys. Rev. B 53, 15036 (1996).Google Scholar