Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T10:03:38.253Z Has data issue: false hasContentIssue false

The Effect of Carbon/Self-Interstitial Clusters on Carbon Diffusion in Silicon Modeled by Kinetic Monte Carlo Simulations

Published online by Cambridge University Press:  17 March 2011

M. Jaraíz
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974
H. J. Gossmann
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974
G. H. Gilmer
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974
J. L. Benton
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974
P. Werner
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany
Get access

Abstract

A new model for carbon diffusion in silicon that explains carbon diffusion during annealing at 850°C and 900°C in superlattice carbon structures grown by MBE is implemented using the Monte Carlo atomistic simulator DADOS. Carbon concentrations in the delta layers are 2×1020 cm−3, exceeding by far the solid solubility. The simple kick-out mechanism which incorporates the well established values of the product of diffusivity and equilibrium concentrations of intrinsic point defects and in-diffusion experiments of carbon in silicon does not explain the observed C diffusion profiles. A more detailed analysis of the experiments shows that, in order to fit them, a more unstable Ci is required. Therefore, we include the formation of clusters in the simulations. The formation of carbon/Si self-interstitial clusters promotes the premature break-up of Ci and the increase of the Si self-interstitial concentration in the carbon rich regions and, consequently, provides a better fit to the experiments. The low solubility of carbon in silicon at the annealing temperatures explains why these clusters are formed, even under conditions where the self-interstitial concentration is below the equilibrium value.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stolk, P. A., Gossmann, H.-J., Eaglesham, D. J., Jacobson, D. C., Rafferty, C. S., Gilmer, G. H., Jaraíz, M., Poate, J. M., Luftman, H. S., Haynes, T. E., J. Appl. Phys. 81 6031 (1997)10.1063/1.364452Google Scholar
2. Rücker, H., Heinemann, B., Röpke, W., Kurps, R., Krüger, D., Lippert, G. and Osten, H. J., Appl. Phys. Lett. 73, 1682 (1998)10.1063/1.122244Google Scholar
3. Tan, T. Y. and Gösele, U., Appl. Phys. A: Solids Surf 37, 1 (1985)10.1007/BF00617863Google Scholar
4. Werner, P., Gossmann, H., Jacobson, D. C. and Gösele, U., Appl. Phys. Lett. 73 2465 (1998)10.1063/1.122483Google Scholar
5. Scholz, R., Gösele, U., Huh, J.-Y., Tan, T. Y., Appl. Phys. Lett. 72, 200 (1998)10.1063/1.120684Google Scholar
6. Bracht, H., Haller, E. E., Clark-Phelps, R., Phys. Rev. Lett. 81, 393 (1998)10.1103/PhysRevLett.81.393Google Scholar
7. Bean, A. R., Newman, R. C., J. Phys. Chem. Solids Pergamon Press 32 1211 (1971)10.1016/S0022-3697(71)80179-8Google Scholar
8. Newman, R. C. and Wakefield, J., J. Phys. Solids 19 230 (1961)10.1016/0022-3697(61)90032-4Google Scholar
9. Rollert, F., Stolwijk, N. A., Mehrer, H.. Mater. Sci. Forum 38–41 753 (1989)Google Scholar
10. Gösele, U. in Oxygen, Carbon, Hydrogen and Nitrogen in Silicon vol 59, ed. Mikkelsen, J. C. Jr, Pearton, S. J., Corbett, J. W. and Pennycook, S. J. Google Scholar
11. Tipping, A. K. and Newmann, R. C., Sem. Sci. Tech. 2 315 (1987)10.1088/0268-1242/2/5/013Google Scholar
12. Jaraíz, M., Pelaz, L, Rubio, E., Barbolla, J., Gilmer, G. H., Eaglesham, D. J., Gossmann, H.-J., Poate, J. M., Mat Res. Soc. Symp. Proc. Vol. 532 43 (1998)10.1557/PROC-532-43Google Scholar
13. Gossmann, H.-J., Stolk, P. A., Eaglesham, D. J., Gilmer, G. H., Poate, J. M., Proc. Electrochem. Soc. 64, 46 (1996)Google Scholar
14. Pelaz, L., Jaraíz, M., Gilmer, G. H., Gossmann, H.-J., Rafferty, C. S., Eaglesham, D. J., Poate, J. M., Appl. Phys. Lett 70 2285 (1997)10.1063/1.118839Google Scholar
15. Zhu, J., Rubia, T. Díaz de la, Mailhoit, C., Mat. Res. Soc. Symp. Vol. 439, 59 (1997).10.1557/PROC-439-59Google Scholar
16. Cowern, N. E. B., Janssen, K. T. F., Walle, G. F. A. Van de, Gravesteijn, D. J., Phys. Rev. Lett. 65, 2434 (1990)10.1103/PhysRevLett.65.2434Google Scholar
17. Cowern, N. E. B., Walle, G. F. A. Van de, Gravesteijn, D. J., Vriezema, C. J., Phys. Rev. Lett. 67, 212 (1991)10.1103/PhysRevLett.67.212Google Scholar
18 Canham, L.T. in Properties of Silicon vol 1, ed. INSPEC, London and New York, 1988, 316 Google Scholar