Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T22:18:35.902Z Has data issue: false hasContentIssue false

The Effect of Cs On The Structural Properties Of Barium Titanate Hollandites

Published online by Cambridge University Press:  17 March 2011

K.R. Whittle
Affiliation:
Cambridge Centre for Ceramic Immobilisation – C3i, Department Of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, United Kingdom
G.R. Lumpkin
Affiliation:
Cambridge Centre for Ceramic Immobilisation – C3i, Department Of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, United Kingdom
S.E. Ashbrook
Affiliation:
Cambridge Centre for Ceramic Immobilisation – C3i, Department Of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, United Kingdom
Get access

Abstract

Hollandite, based on Ba and Ti, has been shown to be an ideal medium by which active 135Cs and 137Cs can be immobilised. Diffraction measurements have shown that Cs modifies the symmetry of the material, from monoclinic to tetragonal. Experiments carried out here show the effects of Cs on two hollandite systems based on Ba-Al-Ti and Ba-Mg-Ti. Structural measurements are reported for neutron diffraction, and MAS NMR. The results show that Cs modifies the overall crystal symmetry while having little effect on the order/disorder of Al-Ti and Mg-Ti octahedra.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ringwood, A. E., Kesson, S. E., Reeve, K. D., Levins, D. M., Ramm, E. J. In Radioactive Wasteforms for the Future; Lutze, W., Ewing, R. C., Eds.; North Holland: Amsterdam, 1988, p 233334.Google Scholar
[2] Carter, M. L., Vance, E. R., Mitchell, D. R. G., Hanna, J. V., Zhang, Z., Loi, E., Journal of Materials Research, 17, 25782589, (2002).Google Scholar
[3] Cheary, R. W., Acta Crystallographica Section B-Structural Science, 47, 325333 (1991).Google Scholar
[4] Cheary, R. W., Acta Crystallographica Section B-Structural Science, 46, 599609 (1990).Google Scholar
[5] Cheary, R. W., Acta Crystallographica Section B-Structural Science, 43, 2834 (1987).Google Scholar
[6] Cheary, R. W., Acta Crystallographica Section B-Structural Science, 42, 229236 (1986).Google Scholar
[7] Cheary, R. W., Kwiatkowska, J., Journal of Nuclear Materials, 125, 236243 (1984).Google Scholar
[8] Cheary, R. W., Squadrito, R., Acta Crystallographica Section B-Structural Science, 45, 205212, (1989).Google Scholar
[9] Fanchon, E., Vicat, J., Hodeau, J. L., Wolfers, P., Qui, D. T., Strobel, P., Acta Crystallographica Section B-Structural Science, 43, 440448 (1987).Google Scholar
[10] Shannon, R. D., Acta Crystallographica Section A, A32, 751767, (1976).Google Scholar
[11] Shannon, R. D., Prewitt, C. T., Acta Crystallographica Section B-Structural Science, B25, 925946, (1969).Google Scholar
[12] Howard, R. I., Hull, S. “User Guide for the Polaris Powder Diffractometer at ISIS,” Rutherford Appleton Laboratory, 1997.Google Scholar
[13] Larson, A. C., Dreele, R. B. Von “General Structure Analysis System (GSAS),” Los Alamos National Laboratory Report LAUR, 2000.Google Scholar
[14] Toby, B. H., Journal of Applied Crystallography, 34, 210213 (2001).Google Scholar
[15] Rietveld, H. M., Journal of Applied Crystallography, 2, 6571 (1969).Google Scholar
[16] Hartman, J. S., Vance, E. R., Power, W. P., Hanna, J. V., Journal of Materials Research, 13, 2227 (1998).Google Scholar